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TIME AND MEMORY: TOWARDS A
PACEMAKER-FREE THEORY OF INTERVAL TIMING
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A popular view of interval timing in animals is that it is driven by a discrete pacemaker-accumulator
mechanism that yields a linear scale for encoded time. But these mechanisms are fundamentally at
odds with the Weber law property of interval timing, and experiments that support linear encoded
time can be interpreted in other ways. We argue that the dominant pacemaker-accumulator theory,
scalar expectancy theory (SET), fails to explain some basic properties of operant behavior on inter-
val-timing procedures and can only accommodate a number of discrepancies by modifications and
elaborations that raise questions about the entire theory. We propose an alternative that is based on
principles of memory dynamics derived from the multiple-time-scale (MTS) model of habituation.
The MTS timing model can account for data from a wide variety of time-related experiments: pro-
portional and Weber law temporal discrimination, transient as well as persistent effects of reinforce-
ment omission and reinforcement magnitude, bisection, the discrimination of relative as well as
absolute duration, and the choose-short effect and its analogue in number-discrimination experi-
ments. Resemblances between timing and counting are an automatic consequence of the model. We
also argue that the transient and persistent effects of drugs on time estimates can be interpreted as
well within MTS theory as in SET. Recent real-time physiological data conform in surprising detail
to the assumptions of the MTS habituation model. Comparisons between the two views suggest a
number of novel experiments.
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There is a developing consensus that inter-
val timing in animals is driven by a discrete
pacemaker-accumulator mechanism that
yields a linear scale for encoded time (e.g.,
Gibbon, 1991). But these mechanisms are
fundamentally at odds with the Weber law
property of interval timing, and experiments
that support linear time can be interpreted
in other ways. In this article we first review
the experimental and theoretical evidence
for the dominant pacemaker-accumulator
theory, scalar expectancy theory (SET; Gib-
bon, 1977). This review does not deal with
the major competitor to SET, the behavioral
theory of timing (BeT: Killeen & Fetterman,
1988). Both theories confront the Poisson
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variability (Weber law) problem, but BeT
solves it in a less ad hoc (and more easily dis-
provable) way than SET (Bizo & White, 1995,
1997). We focus on SET to limit the length
of this paper, because some critiques of BeT
already exist (e.g., Church, Meck, & Gibbon,
1994; Gibbon & Church, 1992) and because
in terms of citations and numbers of pub-
lished papers, SET is by far the most popular
theory of interval timing. The review con-
cludes that SET fails to explain some basic
properties of operant behavior on interval-
timing procedures and can only accommo-
date a number of quantitative discrepancies
by modifications and elaborations that raise
questions about the entire theory. The sec-
ond part of the paper suggests an alternative
approach based on known principles of mem-
ory dynamics. This alternative lacks the for-
mal analytic base of SET, but is pacemaker
free, is simpler in concept, and addresses a
wider range of data.

SCALAR EXPECTANCY THEORY
The scalar expectancy theory of timing

(Gibbon, 1977; Gibbon & Church, 1984;
Treisman, 1963) has provided a valuable
framework for the study of interval timing in
animals. The theory has motivated and or-
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ganized the majority of recent behavioral ex-
periments on interval timing (cf. Gibbon,
1991). It has also provided suggestive insights
into pharmacological effects (e.g., Meck,
1996). We believe that two features of SET
may well be retained by future theories of in-
terval timing: the idea that the current time
estimate and the memory for times rein-
forced in the past follow independent laws;
and the notion that behavior is driven by
some kind of comparison between current
and remembered time of reinforcement.
Nevertheless, we will argue that despite its
formal structure and proven usefulness, SET
is unnecessarily elaborate and redundant,
and it faces empirical shortcomings that are
sufficient to motivate the search for an alter-
native.

SET was devised to explain two things: (a)
that steady-state measures of time discrimi-
nation such as wait time (or, more precisely,
break point; Schneider, 1969) on fixed-interval
(FI) schedules or peak-rate time (on the peak
procedure) are proportional to the to-be-
timed interval (proportional timing; Dews,
1970); and (b) that the standard deviations
of such dependent measures are proportion-
al to their means (e.g., Catania, 1970; Stad-
don, 1965). The latter property is just We-
ber’s law applied to the dimension of time
(Weber timing). In the SET context it is termed
scalar timing (Gibbon, 1977).

In fact, there is some confusion between
the terms scalar and proportional in the liter-
ature, which is why we reserve the term pro-
portional timing for any linear relation be-
tween an independent temporal variable
(like interfood interval) and a dependent var-
iable (like wait time or peak time), and scalar
(Weber law) timing for the constant ratio be-
tween the mean and standard deviation of a
dependent temporal variable.

The essence of scalar expectancy theory is
straightforward: A Poisson-variable ‘‘pace-
maker’’ begins emitting pulses a short time
after the onset of the time marker, and these
are accumulated until a short time after re-
inforcement, at which point the value of the
accumulator is stored in a reference memory and
the accumulator is reset to zero. Parameters
in the simple theory are the start and stop
delays and the rate of the pacemaker (which
determines the variability of time estimates).
To generate behavior, the stored accumulator

total is compared with the current total, and
when the difference falls below a threshold
(which may also vary), responding at a steady
rate begins. There is not yet consensus about
the learning process: how many values are
stored in reference memory, how these are
selected for comparison, and so forth (Brun-
ner, Fairhurst, Stolovitsky, & Gibbon, 1997).
The credit-assignment problem—how does
the system ‘‘know’’ what stimulus to use to
reset the accumulator (i.e., how does it iden-
tify the time marker?)—is left open by SET.
We will see in a moment that a related prob-
lem—how does the system recognize a tri-
al?—is also not addressed by SET.

The pacemaker concept has always been
troubling, because the properties of real tim-
ing are fundamentally at odds with it. The
problem is that timing with a pacemaker-ac-
cumulator implies greater relative accuracy at
longer time intervals. If there is no error in
the accumulator, or if the error is indepen-
dent of accumulator value, and if there is
pulse-by-pulse variability in the pacemaker
rate, then by the law of large numbers, rela-
tive error (standard deviation divided by
mean, coefficient of variation) must be less at
longer time intervals. This relative improve-
ment with absolute duration is independent
of the type of variability in the pacemaker. In
fact, coefficient of variation is approximately
constant (Weber’s law, the scalar property)
over a limited range of times. At longer times
the coefficient of variation tends to increase
(rather than decrease) with the duration of
the timed interval (e.g., Gibbon, Malapani,
Dale, & Gallistel, 1997; Zeiler, 1991). Gibbon
(1977) was aware of this problem early on,
but chose to deal with it in ways that preserve
the pacemaker-accumulator properties of
SET.

In an exploration of ways to reconcile the
pacemaker-accumulator idea with Weber’s
law, Gibbon and Church (1984) showed that
the simple pacemaker-accumulator model
needs to be modified if it is to match the data.
First, Gibbon and Church acknowledge that
Poisson variance alone does not yield the sca-
lar property: ‘‘In the Poisson system, variance
increases directly with the mean, so that the
system is more efficient, i.e., the ratio of stan-
dard deviation to mean is lower at long times
than at short times’’ (1984, p. 475); and later,
‘‘These results, we feel, rule out Poisson var-
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iance acting alone’’ (p. 477). Then, they go
on to deal with the pacemaker-accumulator
problem as follows:

An alternative [to pulse-by-pulse variability]
source of pacemaker variance is a drifting rate.
Imagine that the time between pulses . . . is
fixed on any trial, but from trial to trial, the
pulse rate . . . varies normally around a mean.
. . . A more realistic version might allow rapid
variation of local pulse rate both within and
between trials, but for our present purposes, it is
simplest to think of a locally constant rate which
varies from trial to trial [italics added] . . . we
show that assuming a normal form for local
rate . . . we arrive at a system that is linear in
real time with the scalar property: variance in
the accumulator, and therefore the memory,
increases approximately as the square of the
mean. (p. 477)

So, rather than give up the pacemaker idea,
a core assumption of the theory, Gibbon and
Church reconcile it with the scalar property
by means of two additional assumptions: that
pacemaker rate varies (a) only from trial to
trial (even though the system has no princi-
pled way to distinguish trial-onset stimuli
from other stimuli) rather than simply pulse
by pulse, and (b) normally rather than Pois-
son (note that normal variation in pulse rate
assumes a much more complex process than
random—Poisson—variation in time of occur-
rence of each pulse).

Given these constraints on the pacemaker,
it is not clear why it is needed at all. Why not
just assume a linear time code (no counts)
with a slope that varies normally from trial to
trial? In this bald form the arbitrariness of the
assumption of trial-by-trial variation would be
more apparent. We argue below that current
expositions of the theory in fact take some-
thing close to this form, but because the
pacemaker-accumulator framework is re-
tained, the redundancy of the pacemaker as-
sumption is not obvious.

It is worth noting that the accumulator as-
sumption is itself problematic, because it im-
plies a biological process that can increase
without limit. SET assigns no upper bound to
the duration of intervals that can be timed,
so if the time code is linear, there is no limit
on the accumulator total.

The fundamental contradiction between
the pacemaker-accumulator idea and the We-
ber law property of timing should be fatal to
any pacemaker-accumulator theory. Why has

SET thrived in spite of this difficulty? One
reason is surely because the pacemaker no-
tion is so intuitively plausible: Modern clocks
(but not older devices such as the hourglass
and the clepsydra) all rely on the counting of
discrete pulses. Neurophysiology also pro-
vides ample evidence for pacemakers with pe-
riods in the SET range (1 to 50 per second)
(e.g., Spitzer & Sejnowski, 1997). But traces,
integrators, and long-period oscillators are
also widespread in neural and other tissue,
even at the level of individual cells (Bünning,
1973; Kondo et al., 1997). Physiology is rich
enough to support almost any hypothetical
mechanism, so that physiological plausibility
rarely distinguishes among behavioral theo-
ries (Staddon & Zanutto, 1998). Many drug
effects find a natural interpretation within
SET (e.g., Meck, 1996), but they can also be
explained (we will argue) by competing the-
ories, so this evidence is also not decisive.

We suspect that the main reason the Pois-
son pacemaker is accepted despite its theo-
retical inconvenience is that in recent expo-
sitions of SET it receives only lip service: It is
assumed but not really used. For example, it
is often suggested that the Poisson pacemaker
has a ‘‘high rate’’ (Gibbon, 1991, p. 22) so
that ‘‘Poisson [pacemaker] variance rapidly
becomes swamped by scalar variance [i.e., the
noisy multiplier]’’ (Leak & Gibbon, 1995, p.
18). Gibbon (1992) has shown how assump-
tions about memory encoding and decoding
‘‘allow multiplicative random variables to in-
tervene . . . between the value of a count in
the accumulator at reinforcement time and
its value after retrieval when it is used for
comparison’’ (1992, p. 289). He concludes,
‘‘Scalar variance is induced by randomizing
the Poisson mean with bias, or encoding the
retrieval variance in the memory system. The
components of variance multiply the repre-
sentation of criterion times and hence induce
the scalar property’’ (p. 293). And, most re-
cently and simply, ‘‘We have proposed that
[Weber’s law in timing] reflects an underly-
ing random variation in a multiplicative noise
variable’’ (Gibbon et al., 1997, p. 170). Thus,
the awkward property of any pacemaker-ac-
cumulator system—increasing relative accu-
racy at longer times—is sidestepped, because
variance due to pacemaker rate variation is a
trivial part of the whole. In both early and
current versions of SET, the Poisson pace-
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maker assumption is redundant: Either the
Poisson property is replaced by a constant
rate that varies from trial to trial, or, alterna-
tively, residual Poisson variability is deemed to
make a negligible contribution to total vari-
ance.

The core assumptions of SET as it is actu-
ally used seem to be something like the fol-
lowing. SET, and perhaps any theory of op-
erant timing, seems to require three
time-related variables: real elapsed time, the
encoded value of current time, and the re-
membered value for times encoded in the
past. We denote real time as ti, where i indi-
cates the relevant time marker. The encoded
value for ti is ti. The remembered value for a
past ti we indicate by ti9. An asterisk denotes
the value of each variable that is associated
with reinforcement. The internal variable for
current time, ti, is always referred to in SET
as ‘‘number of pulses,’’ but because the pace-
maker-accumulator assumption is in fact un-
necessary, it could simply be any internal var-
iable proportional to real time.

SET assumes that the relation between re-
membered time and real time is linear (cf.
Figure 3, below; Leak & Gibbon, 1995, Figure
1, and many such figures in earlier papers).
Formally, t9 5 kt (subscripts neglected for
simplicity); that is, remembered time, t9, is
proportional to real time, t, and k is a con-
stant of proportionality. But this cannot be a
direct relation, because remembered time, t9,
is not stored directly—what is stored is en-
coded time, t—and indeed Gibbon (1991)
writes ‘‘When, on a given trial, reinforcement
is obtained at a time t*, the value for accu-
mulated pulses [i.e., t, encoded current time,
in our terminology] stored in working mem-
ory on that trial is translated to reference
memory [i.e., converted from t* to t9*] via
the proportionality constant, k [our sym-
bols]’’ (p. 23). So the correct relations must
be

t9 5 kt (1a)

and

t 5 lt, (1b)

so that

t9 5 klt, (1c)

where l denotes the pacemaker rate or, in
our terms, the scale relation between linearly

coded internal time t and real time t. Gibbon
concludes, ‘‘The variation induced by these
parameters [k and l] scales with t* so that the
distributions on memory are (nearly) scale
transforms of each other’’ (1991, p. 23). As
we have seen, the variation in pacemaker
rate, l, is assumed to be negligible; hence,
the major contribution to these distributions
is variation in parameter k. Because k is a mul-
tiplier, any variation in t9 will automatically be
proportional to t (i.e., scalar, in SET termi-
nology). Thus, SET explains the scalar prop-
erty by assuming (a) that there is a multipli-
cative transformation between encoded time
and remembered time; (b) that temporal
judgments represent a comparison between
long-term remembered time and short-term-
encoded current time; and (c) that most of
the variability in remembered time is due to
the multiplicative relation (k) between encod-
ed and remembered time. The Poisson pace-
maker-accumulator system seems to be com-
pletely redundant in this most recent version
of SET. The effect of independent variables
such as drugs on a previously learned perfor-
mance is attributed either to a change in k
(the translation between working and refer-
ence memory), a change in the slope of
Equation 1b (i.e., in the more or less constant
pacemaker rate), or a change in t9*, the re-
membered time of reinforcement (in refer-
ence memory).

Response rule. Predictions of response pat-
tern versus time (and sources of variability)
are obtained through a threshold assumption
(note that the assumption that response rate
stops and starts around the time of reinforce-
ment is tied very much to a particular exper-
imental procedure, the peak procedure, dis-
cussed below, because response rate is not so
simply related to t* on other interval-timing
schedules):

if zt9* 2 tz , u, response rate 5 x,
(2a)5otherwise, response rate 5 0,

where x is a constant and u is a threshold.
Because both t9 and t are linear with respect
to real time (Equation 1), t may be substitut-
ed so that Equation 2a is thus shorthand for
(l cancels)

if zkt* 2 t z , u, response rate 5 x,
(2b)5otherwise, response rate 5 0.
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Although Equation 2a is the simplest form of
threshold assumption, in most expositions of
SET (cf. Church & Gibbon, 1982, Equation
1; Gibbon, 1991, Equation 1) a ratio version
is preferred:

if z(kt* 2 t)/kt*z , u, response rate 5 x,5otherwise, response rate 5 0.
(2c)

Equation 2c, linear time encoding with a ra-
tio response rule, is equivalent to logarithmic
time with a difference response rule:

z(kt* 2 t)/kt* z , u

5 zt/kt*z , u 1 1 5 zln t 2 ln t*z , u9, (2d)

where u9 is a threshold value. Nevertheless,
the ratio-rule-with-linear-time version is pre-
ferred in SET because of the commitment to
a pacemaker.

The essential features of SET as it has been
used in recent papers are thus relatively sim-
ple: linear encoded and remembered time,
related multiplicatively, and all-or-none be-
havior generated via a thresholded compari-
son between them. We will argue in a moment
that time is in fact encoded approximately
logarithmically, as Equation 2d implies.

Alternatives to Linear Encoded Time

It is important to recognize that the only
necessary requirement for interval-time dis-
crimination is some internal variable that
changes in a reliable monotonic way with
time elapsed since a time marker. Moreover,
as long as there is a unique value of the var-
iable for each time, it makes no difference
whether the variable increases or decreases
with time. Given such a monotonic function,
time can be told by associating specific values
of the variable with reinforcement or its ab-
sence and responding accordingly. Given that
SET-type theories of timing are essentially a
comparison between some internal time-re-
lated variable, t 5 f(t), and the remembered
value of that variable at the time of reinforce-
ment, there is no up-front reason to restrict
such models to a linear function. A couple of
nonlinear possibilities are exponential,

t 5 e2at, (3)

and logarithmic,

t 5 k1 2 k2ln(t), (4)

where a and ki are constants. Exponential de-
cay is not consistent with Weber’s law but, as
Fechner showed many years ago, a logarith-
mic function like Equation 4 is. If internal
noise, e, is independent of t [i.e., t 5 k1 2
k2ln(t) 1 e], then Weber’s law (the scalar
property) can be obtained directly, just from
the form of t, because the slope of Equation
4 is inversely related to t: dt/dt 5 2k2/t. [Be-
cause it does not matter whether f(t) is in-
creasing or decreasing, we use the decreasing
form of log function for comparability with
the other decreasing functions, and because
we will later introduce the idea of a decreas-
ing memory trace as a basis for the timing
function.] Given a constant variation in re-
sponse threshold, therefore, the variation in
the time of onset of responding (Equation 2)
will be proportional to the slope of f(t),
hence (for the log function) proportional to
t. This is less ad hoc than the early version of
SET, which assumes linear f(t) plus trial-
locked variation in pacemaker rate to achieve
the same result. It is more complicated than
the later SET, which uses a multiplicative
translation from working to reference mem-
ory (k), but that version runs into difficulties
with bisection data.

The log-time assumption is consistent with
temporal bisection data, which show that an-
imals judge an event of duration x to be
equally like two comparison durations y and
z if x ù Ïyz, that is, at the geometric mean
(e.g., Church & Deluty, 1977; Stubbs, 1968).
In a typical bisection experiment the organ-
ism has two choices and is presented on each
trial with one of two stimulus durations, TS

and TL. Reinforcement is delivered for Re-
sponse A following the short duration, TS,
and Response B following the long, TL. In oc-
casional probe trials, intermediate durations
are presented. The typical finding is that sub-
jects are indifferent between A and B when
the probe duration, TP, is equal to the geo-
metric mean of TS and TL, TP 5 (TS·TL)½. This
is what would be expected given symmetrical
variation around TS and TL on a logarithmic
psychological time scale: Responses A and B
should have equal strength (point of subjec-
tive equality) at the geometric mean of the
short and long training times. This result is
different from what would be predicted by
SET (cf. Gibbon, 1981; Leak & Gibbon, 1995,
Figure 1). For example, given TS 5 1 and TL
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Fig. 1. Some memory-decay functions. Parameters
(Equation 16): ai 5 .7, .9, and .994, for three cascaded
integrators; b 5 .2. k 5 .94 (exp). k 5 .2 (log). m 5 2.5
(power). The MTS function is derived from the recovery
portion of a habituation series. Scale parameters are ig-
nored. Note that the power and MTS functions are very
similar.

5 2, logarithmic time predicts bisection at TP

5 1.414 and scalar timing at TP 51.33, the
harmonic mean (linear time would place the
point of subjective equality at 1.5).

There are several other functions that have
very similar properties to the logarithmic:
power (e.g., Staddon, 1984), the sum of ex-
ponentials (multiple time scale: MTS1; Stad-
don, 1997; Staddon & Higa, 1996), and oth-
ers. Four functions are shown in Figure 1.
The logarithmic, power, and MTS (but not
the single-exponential) functions can approx-
imate both Weber’s law and necessary mem-
ory properties such as Jost’s law. The power
function is the candidate offered by Wixted
and Ebbesen (1991, 1997) for the forgetting
function in a range of species. The log and
power functions were the best fits to the large
human-forgetting-curve data set reviewed by
Rubin and Wenzel (1996; they did not look
at MTS-type functions). The resemblance be-
tween the MTS and power functions will be-
come relevant when we present a memory-
based approach to time discrimination in the
second half of the paper.

1 But note that because of the nonlinear dynamics of
the MTS model, the form of the function is not invariant,
but depends on the system history. For example, see how
the MTS trace declines more slowly after a history of low-
rate stimuli versus a history of high-rate stimuli in Figure
5, below.

Argument Against Log Time

Given the apparent equivalence of models
with a linear time scale and a ratio-difference
response rule versus a logarithmic scale and
a constant-difference response rule, it is ob-
viously important for SET to rule out the hy-
pothesis that time is encoded logarithmically.
The main argument against the assumption
that time is encoded in a log-like way is based
on ‘‘time-left’’ choice experiments (Gibbon &
Church, 1981). In the time-left procedure,
rats or pigeons must choose between a short
fixed delay and a longer fixed delay that has
already partly elapsed (time left). In their Ex-
periment 1, for example, rats chose between
two levers, one fixed and the other retract-
able, representing different delays until food
reinforcement. The fixed lever signaled a
fixed delay, CTO (timed from trial onset), un-
til food. The delay on the retractable lever,
SLP (timed from lever presentation), present-
ed TTO s into the trial, was also fixed, but
shorter than CTO. The experimental question
is: How will preference for fixed delay SLP ver-
sus time-left delay CTO 2 TTO change as a
function of TTO? In particular, will the ani-
mals prefer the time-left lever when CTO 2
TTO 5 SLP? In fact, rats are indifferent when
delays to food are equal on both levers, which
Gibbon and Church take as evidence against
logarithmic coding of time: ‘‘A logarithmic or
indeed any curvilinear subjective time scale
ought to result in a greater preference for the
time-left side of the choice when the real time
left to food is equal on both alternatives’’ (p.
92).

This argument is equivalent to saying that
because the log form for t changes less dur-
ing the second half of a timed interval than
during the first half, the second half is more
valuable to the animal, because it is objective-
ly smaller than a half-length interval just be-
ginning (cf. Gibbon & Church’s, 1981, dis-
cussion of Figure 2). Thus, if a 30-s lever (SLP

5 30) is introduced half way through the in-
terval on a 60-s lever (CTO 5 60), the animal
is supposed to compare the small upcoming
difference, Dt, between t30 and t60 on the 60-
s lever with the larger upcoming difference
between t0 and t30 on the inserted lever and
choose the 60-s lever, rather than be indiffer-
ent between the two as linear timing would
require.
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This analysis is flawed, because it takes an
assumption about the form of an internal
‘‘time-coding’’ variable and then assumes a
direct relation between that variable and re-
inforcement value: the smaller Dt, the greater
the value.2 The problem is that a theory
about how time is encoded [e.g., the assump-
tion that t 5 f(t)] says nothing at all about
how an animal will act with respect to a given
change in t. Nor does it say whether a given
change always has the same value, indepen-
dent of the starting value for t. For example,
it is possible that the animal will evaluate the
30-s alternative in a conditional way, depend-
ing on when it occurs during the 60-s inter-
val, or that it will begin timing both outcomes
from the beginning of the 30-s interval once
the 30-s lever is introduced. Moreover, Gib-
bon and Church’s (1981) assumption that
value is inversely related to Dt, independently
of the starting value, leads to obvious coun-
terfactuals. After a very long time, even a
large time-left delay (very small Dt at that
long time) should be preferred to a short
comparison delay (large Dt), for example. Ei-
ther the log-time assumption is wrong, or the
assumption that value is inversely related to
encoded (as opposed to real) time is wrong.

Gibbon and Church (1981) have a second
argument for the linear time assumption:

The increase in preference for time left over
indifference when the standard lever entered
at 45 sec was the same as the decrease in pref-
erence for time left when the standard lever
entered at 15 sec. Thus, preference was sym-
metrical around indifference. These results
strongly suggest that time is appreciated in a
linear fashion in both intervals. A logarithmic
or indeed any curvilinear subjective time scale

2 Gibbon and Church’s argument is deceptively similar
to the optimality argument that derives risk aversion from
decreasing marginal utility. The crucial difference is that
the risk-aversion argument derives from a plot of subjec-
tive value versus objective quantity, whereas their argu-
ment derives from a plot of objective time code versus
objective real time. The problem in their analysis is that
subjective is not the same as encoded. Time may well be
(and is, we contend) encoded nonlinearly, in the sense
that it is mapped onto some internal variable that in-
creases with elapsed time in a negatively accelerated way.
Nevertheless, subjective time, like subjective weight and
other examples, is roughly proportional to real time. We
argue that encoding determines experimental results
that depend on discriminability, but subjective value de-
termines results that depend on value (e.g., choice ex-
periments).

ought to result in a greater preference for the
time-left side of the choice when the real time
to food is equal on both alternatives. (p. 92)

They do acknowledge a potential problem
with this interpretation: ‘‘Suppose that each
of the three entry points [i.e., 15 s, 30 s, and
45 s] is learned separately as a paired-associate
subtask [italics added]. Were this the case, the
performances should be comparable with
ones in which a 45-sec FI is pitted against a
30-sec FI, two 30-sec FIs are pitted against
each other, etc.’’ On this basis they conclude
that ‘‘The mechanism for producing an ap-
propriate performance in each of the three
subproblems then might be of almost any
sort, independently of the character of the
subjective time scale’’ (p. 93). Nevertheless,
they reject this line of reasoning because pref-
erence for the 60-s lever when the 30-s choice
is inserted at 15 s (45 vs. 30 s to food) is the
same as the preference for the 30-s lever
when it is inserted at 45 s (15 s vs. 30 s to
food). But this argument is also not decisive,
because the supposedly symmetrical data
(their Figure 3) are not very convincing
(there is much individual variability among
the 4 rats), and because such a result is in
any case not quite what we would expect from
other choice data. In other experiments with
delayed reward (e.g., Chung & Herrnstein,
1967; Shull, Mellon, & Sharp, 1990) prefer-
ence is proportional to relative immediacy.
Thus, given two delays on left and right dL

and dR, the ratio of responding, BL/BR 5 (1/
dL)/(1/dR) 5 dR/dL. Hence, in the time-left
experiment, we might expect B45/B30 5 30/
45 5 .67, whereas B30/B15 5 15/30 5 .5, that
is, the two ratios should not be the same, as
Gibbon and Church contend. They did not
test between these two possibilities in this ex-
periment, but in a later ones (Brunner, Gib-
bon, & Fairhurst, 1994; Gibbon, 1986) they
confirmed that reinforcement delays con-
form to the idea that the animals value a
choice according to relative immediacy. Thus,
in the Gibbon (1986) experiment, pigeons
were roughly indifferent between two equi-
probable delays of 15 and 240 s (harmonic
mean: 28 s) and a fixed delay of 30 s.

There are at least two other ways to inter-
pret the time-left experiment that can rec-
oncile these results with nonlinear encoded
time:
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First, consider Gibbon and Church (1981),
Experiment 2 (Figure 6). There are two
choices, each available at a variable time after
trial onset (TO): call that time TTO. Choice
W gives food after a time, CTO, that is variable
from the time of choice presentation, but is
fixed from the onset of the trial. Thus the
time marker for Choice W is trial onset. For
this choice, therefore, we have a real time,
tTO, and an encoded time, tTO, both measured
from time marker TO. On a given trial, at
time T the value of Choice W is given by the
immediacy of food on that choice (according
to numerous delay-of-reinforcement experi-
ments, e.g., Chung & Herrnstein, 1967),
which is given by the difference between the
time at which the choice must be made, TTO,
and the time when food is predictably deliv-
ered, CTO. Because t 5 f(t), this value func-
tion is just

21 21V(T ) 5 V(t 2 t ) 5 1/[ f (t ) 2 f (t )]C T C T

ù 1/(C 2 T ), (5)TO TO

where f 21 denotes the inverse function. The
situation for the other choice in this experi-
ment, Choice G, is simple: Food arrives after
a fixed delay time, S, from choice presenta-
tion (CP, not trial onset) which is indepen-
dent of T. Thus,

V(T) 5 V(tS) 5 1/f 21(tS) ù 1/SCP. (6)

The choice then is trivial: Choose the shorter
real-time delay, which is what the animals do.

In other words, although time is coded ac-
cording to some function f(t) that determines
the accuracy of time discrimination (this is a
confusion scale in the traditional psychophysi-
cal terminology), behavioral actions are de-
termined by the inverse function, which is the
animal’s estimate of real time—the ecologi-
cally relevant variable. The claim is that no
matter what the animal’s internal code for
elapsed time, it will also have some kind of
compensatory perceptual constancy mecha-
nism (we suggest a specific possibility below)
that allows it to behave appropriately with re-
spect to the real world (i.e., real time). This
way of doing it avoids the non sequitur of as-
suming that just because long times cannot
be estimated as accurately as short times, time
intervals long delayed from a time marker are
somehow more valuable than time intervals
little delayed from a time marker.

There is a second way to look at the time-
left experiment. First, we must acknowledge
that an organism may be able to assess (i.e.,
respond selectively to) the rate of occurrence
of an event like food reinforcement without
being directly sensitive to the time at which
food occurs. For example, a simple organism
whose behavior is guided by a leaky integra-
tor can assess reinforcement rate via the state
of the integrator but may nevertheless be un-
able to anticipate a periodic event (cf. many
stochastic learning models, beginning with
Bush & Mosteller, 1955). Second, we assume
that the organism can learn the association
between particular stimuli and particular
rates of reinforcement.

Now consider the decaying ‘‘memory’’ of a
time marker. At different delay times, 1, 2, 3,
and so on, this memory takes on different
values, t1, t2, t3, and so on. On the time-left
choice, each of these ‘‘memories’’ is a dis-
criminative stimulus for an outcome that has
a certain rate of reinforcement (the recipro-
cal of the time left). (This is a ‘‘paired-asso-
ciate subtask,’’ in the words of Gibbon and
Church, 1981.) The reinforcement rate sig-
naled by each stimulus value can therefore be
compared with the rate signaled by the fixed-
delay ‘‘standard’’ stimulus. Clearly, the ani-
mal should be able to choose either the time-
left stimulus, ti, or the standard stimulus,
depending on which is associated with the
higher rate of reinforcement. This interpre-
tation is independent of the particular form
of memory-decay function. Perhaps this is
what Gibbon and Church meant when they
write (correctly, in our view) that ‘‘The mech-
anism for producing an appropriate perfor-
mance in each of the three subproblems then
might be of almost any sort, independently of
the character of the subjective time scale’’
(1981, p. 93).

The essential feature of our second argu-
ment against Gibbon and Church’s interpre-
tation of the time-left experiment is separa-
tion between the animal’s capacity to assess
reinforcement rates and its capacity to use a
decaying memory trace as a stimulus. There
is in fact no necessary relation between an
organism’s ability to learn to identify a partic-
ular point in time and its sensitivity to rates
of reinforcement The theoretical proof is the
existence of reinforcement-rate-sensitive
learning models that lack any timing capabil-
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ity (e.g., Dragoi & Staddon, in press). The
empirical proof is that even in situations
where time discrimination is possible, such as
concurrent variable-interval variable-interval
choice, time discrimination (momentary
maximizing), and choice performance often
operate independently (cf. Hinson & Stad-
don, 1983; Williams, 1988); and some organ-
isms—some fish, for example—are able to
choose on the basis of reinforcement rate but
seem to be rather poor at estimating time in-
tervals (Rozin, 1965). Thus, Gibbon and
Church’s interpretation of the time-left pro-
cedure is by no means forced. Hence their
data do not constitute evidence against the
idea that encoded time is nonlinear.

These examples are just illustrative. The
fundamental flaw in the time-left argument is
in fact conceptual—namely the assumption
that an organism has access to (and its be-
havior is directly determined by) the objec-
tive properties of its own internal represen-
tation, or, to put the same thing in more
‘‘psychological’’ terms, that subjective (how
long a time appears to be to the animal)
equals objective (how much its internal time
code changes). This is an old error in psy-
chology, and there are numerous illustra-
tions. For example, in the neural homuncu-
lus in the human brain, the representation of
the hands is much larger than the represen-
tation of the back, and this is reflected in the
smaller two-point threshold on the hands.
But we do not feel that our hands are larger
than our back. Peripheral visual resolution is
much worse than foveal, but the periphery
does not appear smaller than the area ob-
served by the fovea. In the discrimination of
weight (Weber’s original experiment, and the
basis for his law), few doubt that the internal
coding is logarithmic. Yet there is also no
doubt that although the just-noticeable-differ-
ence (jnd) for a 1 lb weight is about 0.2 lb
and the jnd for a 10 lb weight is about 2 lb,
the subject knows perfectly well that the sec-
ond increment is larger than the first. As Ste-
vens wrote many years ago, ‘‘the jnd’s for
loudness are unequal in subjective value. The
same appears to be true of other intensive
attributes like subjective weight, brightness
and taste’’ (1951, p. 36). The general point
is that discriminability does not determine
perceived value. Every sensory dimension is
processed in a way that usually preserves a

measure of perceptual constancy (cf. the first
interpretation, above). Thus, we may be less
accurate at large values (weights, times) than
short, but we know perfectly well that a
weight or a time has approximately doubled
in value, even though our internal code has
changed by less than a factor of two.3

Argument for Log Time

The time-left experiments are not a con-
vincing argument against logarithmic encod-
ing of time. Is there any evidence in favor of
log-like encoding, beyond the Weber law stan-
dard-deviation property and geometric-mean
bisection data? There is some indirect sup-
porting evidence that derives from the wide-
spread finding of power-law relations in in-
terval-timing experiments. Platt (1979) has
reviewed numerous studies showing a power-
law relation between temporal dependent
and independent variables in temporal dif-
ferentiation and discrimination experiments:

b 5 qts, (7)

where b is the observed behavior (e.g., re-
sponse duration, waiting time), t is the re-
quired duration, q is a constant, and s is an
exponent (usually close to one). Power-func-
tion relations with exponents different from
unity cannot easily be reconciled with SET,
but there is a theoretical argument that ties
them to logarithmic internal coding. The ar-
gument is as follows.

First assume that temporal discrimination
is a comparison process in which an internal,
logarithmic temporal variable (reference
memory) is compared with an output vari-
able (working memory: encoded elapsed
time) that is also logarithmic: ‘‘Investigators
. . . have suggested that performance in scal-
ing experiments results from the subject

3 John Gibbon (personal communication) has pointed
out an apparent contradiction between the geometric-
mean bisection data, which are consistent with a log
scale, and the time-left and other similar choice data,
which are consistent with linear time. The difference is
that in the bisection case, the animal is judging the du-
ration of a single past event (the sample time) and there-
fore chooses based on the log-scale point of subjective
equality, which is the geometric mean. But in a choice
experiment (e.g., preference for a fixed delay, x, vs. two
equiprobable delays, y and z) the animal is choosing be-
tween different expected rates of reinforcement, so that
choice is at the value point of subjective equality, which
is the harmonic mean: x 5 ½(y 1 z)/yz.
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matching an internal representation of the
stimulus to an internal representation of the
response. If both of these representations are
logarithmically related, the power law results’’
(Platt, 1979, p. 19; see Ekman, 1964; MacKay,
1963). In other words, if memory for a time
interval is encoded logarithmically and if cur-
rent elapsed time is also encoded logarith-
mically, and if behavior involves comparison
between the two, then the empirical relation
between temporal independent and depen-
dent variables will take the power form.

This interpretation of the psychophysical
power law was extended by Staddon (1978)
and the argument can be applied to time dis-
crimination. We assume that the internal ef-
fects, dz, of both remembered time (repre-
sented in Equation 8) and elapsed time
(represented by Equation 9) show Weber law
sensitivity, according to sensitivity coefficients
(Weber fractions), wt and wb:

dt
5 w dz (8)t tt

and

db
5 w dz . (9)b bb

The first equation simply states that a small
change in real time, dt, has a psychological
effect, dz, that is inversely related to t and the
Weber fraction wt: dz 5 dt/wtt; and similarly
for the second equation (Staddon, 1978).

Integrating both sides of Equations 8 and
9 yields

ln t 1 K 5 w z (10)1 t t

and

ln b 1 K 5 w z , (11)2 b b

a logarithmic relation between both remem-
bered time, t, and elapsed time, b, and their
internal effects, zt and zb. K1 and K2 are con-
stants of integration. In temporal discrimi-
nation experiments, the internal effects of re-
membered and elapsed time are equated, zt

5 zb, which allows us to eliminate z from
Equations 10 and 11. Rearranging yields the
power relation (Equation 7), with

q 5 exp(wbK1/wt 2 K2) (12)

and

s 5 wb/wt. (13)

The two constants, K1 and K2, are scale factors
(Staddon, 1978), assumed to be constant
across different experimental procedures.

Notice that if the sensitivities (Weber frac-
tions) of remembered time and elapsed time
are the same, the exponent, s, is unity, and
behavior (waiting time), b, is linearly related
to elapsed time, t. This is a common, but not
universal, result in temporal experiments.
The exponent for the function relating wait-
ing time to FI duration in steady-state para-
metric FI experiments is usually close to one.
But the exponent in steady-state tracking ex-
periments, in which the animal is repeatedly
subjected to cyclically varying interfood inter-
vals, is typically less than one. This is just what
we would expect, given that the exponent s
5 wb/wt and that it is harder for the animal
to remember the upcoming interfood inter-
val when several are intermixed in each ses-
sion than when all the intervals are the same
from session to session. If wt, the Weber frac-
tion for remembered time, increases (i.e.,
poorer discrimination), then the exponent s
should decrease. As this argument suggests,
Innis and Staddon (1971) found a less-than-
one power-function exponent of .824 in an
early interval-tracking experiment in which
pigeons were repeatedly exposed to a cycle of
seven ascending and seven descending inter-
food intervals. They also found that the ex-
ponent increased to .894 when different dis-
criminative stimuli signaled the ascending
and descending parts of the cycle and pre-
sumably reduced memory interference
among remembered intervals (cf. Staddon,
1974b).

If different experimental arrangements af-
fect sensitivities and the two sensitivities are
affected differentially, then the power-func-
tion exponent will be different in different
experiments. It follows from Equations 12
and 13 that the slopes and intercepts of a set
of such functions will be linearly related:

ln q 5 sK1 2 K2, (14)

which is a testable empirical prediction.
DeCasper (1974, cited in Platt, 1979) plotted
the slopes and intercepts of power functions
obtained in four different temporal differ-
entiation experiments, with the results shown
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Fig. 2. Log intercept (k) versus exponent (n) for four
temporal differentiation experiments reanalyzed by
DeCasper (1974).

Fig. 3. Scalar timing and the threshold response rule.
Responding at a constant rate starts and stops when the
difference line exceeds or falls below the threshold. The
scalar assumption means that the difference line always
begins at 1 and ends at 0 (when t* 5 T, for any T); the
linear subjective time assumption means the line is
straight.

in Figure 2. The slopes and exponents show
a reasonably good linear fit to Equation 14.

On the basis of the DeCasper analysis, Platt
(1979) is almost ready ‘‘to conclude that the
power law for temporal differentiation sched-
ules indicates a logarithmic internal represen-
tation for time’’ (p. 20), but he draws back
because

There are . . . two great logical gaps in the at-
tempt to view temporal differentiation sched-
ules as analogous to psychophysical scaling
procedures: (1) what is the stimulus whose in-
ternal representation is controlling respond-
ing and (2) how can the relationship between
that stimulus and its internal representation
be inferred from responding which may be
the result of additional transformations re-
quired by the reinforcement contingencies?
(p. 21)

We have answered the first question. The
‘‘stimulus’’ is just the logarithmically trans-
formed value of current elapsed time. Its ‘‘in-
ternal representation’’ is the reference mem-
ory for past encoded times. The meaning of
Platt’s second question is not totally clear to
us in this context, but we do take up the issue
of reinforcement contingencies later in con-
nection with several specific examples. In any
event, we do not believe that Platt’s objec-
tions to the log-log account of power-law data
are conclusive. Taken all together, the data
and arguments in favor of time coding that is
approximately logarithmic are stronger than
for any other simple function.

Individual Trials: Correlation
Data and Distributions

In the SET analysis of individual trials on
the peak procedure (Church et al., 1994),
well-trained rats are said to learn on each trial
to wait for a certain time (the start time) until
they begin pressing the lever at a constant
rate, which they maintain until they eventu-
ally stop responding (at the stop time). The
constant-rate assumption is only approxi-
mately true, at least for pigeons. For example,
Cheng and Westwood (1993) presented peak-
procedure data showing that ‘‘within the run
phase was an inner run phase at a yet higher
rate’’ (p. 56). And much earlier, Staddon and
Frank (1975) showed that on FI schedules,
pigeons respond faster the later they begin
responding within an interval. Nevertheless,
granted the stop–constant-run–stop pattern
for rats, the threshold assumption of SET
(Equation 2, above), together with the scalar
assumption and the assumption of linear en-
coded time, makes some clear predictions
about the correlations among start time
(tstart), stop time (tstop), and spread (tstop 2
tstart) on the peak procedure. These predic-
tions are illustrated in Figure 3 (a modified
version of Church et al.’s, 1994, Figure 2).
The figure shows the value of the difference
between t (encoded time) and t9*, the re-
membered time at which reinforcement oc-
curs (corresponding to T in real time, when
there is no reference-memory variance) as t
increases from zero, through T (the time of
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reinforcement) and beyond (V-shaped pair of
lines). The threshold is assumed by SET to
vary, and two threshold values (horizontal
lines) are shown, with two start and stop
times. When the threshold is low, start time
is long and the time between start and stop
is short; conversely, when the threshold is
high, start time is short and the time between
start and stop times is long. In simple SET,
therefore, the correlation between tstart and
both tstop and tstop 2 tstart (spread) is negative.

The data agree only partially: The correla-
tion between start and spread is indeed neg-
ative, as SET, and some other theories (Kil-
leen & Fetterman, 1993; Staddon, 1972a;
Staddon & Ayres, 1975) predict (M 5 20.33,
Church et al., 1994, Table 2). But the corre-
lation between start and stop is in fact positive
(M 5 0.31), as predicted by response-com-
petition theories (e.g., Staddon & Ayres,
1975); not negative as predicted by this ver-
sion of SET. Church et al. (following Gibbon
& Church, 1990) interpret the positive start–
stop correlation as evidence for memory var-
iance (the once-per-trial sampling of t9*, dis-
cussed earlier) plus different stop and start
thresholds; that is, they reconcile model and
data by adding another process and parame-
ter. In their final statement on this problem,
Church et al. (1994) conclude that the co-
variance data support a ‘‘scalar timing model
in which animals used on each trial a single
sample from memory of the time of rein-
forcement and separate response threshold
to decide when to start and stop responding’’
(p. 135)—a total of five parameters. Even
without the second threshold, Gibbon and
Church (1990) concluded that ‘‘The flexibil-
ity of the surviving [SET] models is of course
bought at some cost, since additional assump-
tions ineluctably lead to additional parameters’’
(p. 53). Perhaps for this reason, the single-
threshold, linear-difference, no-memory-vari-
ance model continues to be used (e.g., Leak
& Gibbon, 1995, Figure 1) despite its incon-
sistency with the correlation data.

Figure 3 makes other predictions about
peak-procedure data. For example, if the only
source of variance in the model is variation
in the single threshold, then, because of the
linear time assumption, distributions of start
and stop times should be symmetrical with
the same standard deviation. They are nei-
ther. Church et al. (1994) report that the

standard deviation of start times is less than
the standard deviation of stop times (for the
same T value; see their Figure 8). At least one
other study seems to show larger standard de-
viations for start than for stop times, and the
start distribution is highly skewed (Brunner
et al., 1997, Figure 2). Zeiler and Powell
(1994) report that when only individual-sub-
ject data are considered, start and stop times
(measured by Schneider’s, 1969, break-point
procedure) show constant coefficient of var-
iation, consistent with the scalar property, but
pause (time to first response) and peak-rate
time (the preferred variable in SET peak-pro-
cedure experiments) show coefficient of var-
iation increasing as a function of schedule FI
value. They also show a number of power-
function (rather than linear) relations be-
tween temporal dependent and independent
variables (as have a number of other investi-
gators, cf. Platt, 1979). Zeiler and Powell con-
clude, ‘‘Existing theory does not explain why
Weber’s law so rarely fits the results or why
each type of behavior seemed unique’’ (p. 1).
These findings are not consistent with the
simple threshold analysis, although doubtless
all could be reconciled with SET by ‘‘an ap-
propriate selection of a response rule and an
adroit introduction of variance in the struc-
tures we describe’’ (Gibbon & Church, 1984,
p. 482).

One problem with Figure 3 seems to be the
assumption that start and stop times are set
by the same process, whereas the obvious de-
pendence of both on the schedule parame-
ters implies that they are determined sepa-
rately. (The separate determination of start
and stop is recognized by the two-threshold
version of SET, but the values of the two
thresholds are not explicitly linked to sched-
ule parameters, as the data suggest they
should be.) Reinforcement-omission experi-
ments suggest that the default pattern on
strictly periodic reinforcement schedules is
for responding to continue indefinitely once
it has begun (i.e., ‘‘stop’’ time → `). On stan-
dard FI schedules, the animal rarely experi-
ences T values greater than the FI value, so
the default pattern shows up when reinforc-
ers are occasionally omitted (Staddon, 1974b;
Staddon & Innis, 1966). On the peak proce-
dure, start time is determined by T, the time
when the earliest reinforcement can occur,
but stop time is determined by T plus the in-
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tertrial interval (i.e., by the time when the
next reinforcement opportunity will occur).
This dependence is acknowledged in later pa-
pers (Brunner et al., 1997; Church, Miller,
Meck, & Gibbon, 1991; Leak & Gibbon,
1995), but has not yet led to a comprehensive
revision of the earlier approach.

Figure 3 also illustrates a deeper problem
with SET: that the scalar property (which is
admittedly difficult to derive from a pace-
maker-accumulator mechanism) is treated as
an axiom rather than as a derived result. Leak
and Gibbon (1995), for example, deal with
simultaneous timing of two intervals by draw-
ing a version of Figure 3 for each interval
(see their Figure 1), rather than by reapply-
ing the full pacemaker-accumulator model,
with its various thresholds and sources of var-
iance, to two timed intervals.

Summary: Theoretical Strategies

These problems with SET, and its advo-
cates’ responses to them, illustrate one of two
quite different approaches to theorizing. One
approach is to assume, on a priori or intuitive
grounds, the existence of some process, like
a pacemaker-driven internal clock. Research
then proceeds in two steps. The first step is
to refine an experimental paradigm that is
presumed to provide a ‘‘pure’’ measure of
clock properties (the peak procedure, with
suitable choices of probe-trial probability and
duration and intertrial-interval distribution).
The next step is to derive increasingly precise
predictions about the quantitative properties
of behavior in this situation. If these are con-
firmed, the theory is supported. If not, the
theory is modified, usually by adding nonlin-
ear elements (thresholds, multipliers) or
sources of variance, until the new data are
accommodated. There is little concern for
uniqueness. For example, the SET literature
abounds with phrases like ‘‘Here, we describe
the version of the model used in fitting the
data from the two experiments’’ (Allan &
Gibbon, 1991, p. 41); ‘‘I consider here two
response rules, both of which have been used
in different contexts’’ (Gibbon, 1991, p. 25);
or ‘‘I begin with a general model which ap-
plies to any of the timing performances . . .
but with differing instantiations in the com-
ponents’’ (Gibbon, 1991, p. 21). The reader
gets the impression that the model is as-
sumed to be true, and the task of the exper-

iment is to identify sources of variance within
the model framework: ‘‘The estimate of a
time interval may reflect sources of variance
in the clock, memory, or comparator.’’ The
authors go on to acknowledge that ‘‘The es-
timate may also reflect sources of variance
that are independent of the timing process’’
(Church et al., 1991, p. 207), but the assump-
tion that there is a separate ‘‘timing process’’
is never questioned. The model itself is treat-
ed like a set of interchangeable parts that in
different combinations can fit data from al-
most any interval-timing experiment. The
usual scientific strategy of looking for the the-
ory for a given set of phenomena has been
abandoned in favor of a sort of erector-set
approach whose objective is not to find one
explanation but some explanation, within the
flexible range of possibilities defined by SET.

This is not necessarily a bad strategy—after
all, living organisms are also constructed
from a limited number of parts assembled in
different combinations, and much neural net
theorizing has this quality. The SET approach
has also been helpful in designing and orga-
nizing experiments and can give a sense of
closure to the analysis of puzzling data. But it
has pitfalls. First, because the initial pacemak-
er-accumulator-clock hypothesis was ground-
ed largely in intuition and a priori, and not
on demonstrated power to explain preexist-
ing data, the likelihood that it is on the right
lines may be very small. Second, because the
approach is so flexible and the data set is rel-
atively limited, the research program does
not—and perhaps cannot—lead to abandon-
ment of the original theory, which can almost
always be preserved via modification and
elaboration. But for the disinterested observ-
er, each new discrepancy and each new elab-
oration of the theory increasingly raise the
question of whether this is the right approach
at all.

The alternative is to proceed first induc-
tively, to try to find a general rule or process
that can explain a wide range of existing data
on time-related reinforcement schedules. By
beginning with a process that has a substan-
tial inductive base, we may have a better
chance that refinement through experiment
will lead to a better theory, not just one more
resistant to disproof.
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A MEMORY-BASED
TIMING PROCESS

A rat is not a psychophysical instrument,
although, given appropriate training, it can
behave like one. On periodic food-reinforce-
ment schedules, rats, pigeons, and many oth-
er animals engage in a variety of interim ac-
tivities in addition to the terminal operant
response that yields the food (Shettleworth,
1975; Staddon & Simmelhag, 1971; Timber-
lake, 1983). These activities seem to compete,
with each other and with the operant re-
sponse (Staddon, 1972a, 1977; Staddon &
Frank, 1975). For example, restrained pi-
geons wait a shorter time until the first post-
food FI response than do unrestrained ani-
mals that can move around and engage in
interim activities (Frank & Staddon, 1974).
An interim activity like wheel running seems
to delay the terminal response of lever press-
ing; omitting the wheel causes lever pressing
to begin earlier in the timed interval (Stad-
don & Ayres, 1975). Each activity has its own
internal dynamic, and each seems also to be
sensitive to temporal cues. For example, in a
well-trained animal, each activity seems to oc-
cur for a characteristic time. Consequently,
when an activity begins late in the interfood
interval it tends also to end late. This may be
the explanation for the reliably positive start-
stop correlation in peak-procedure experi-
ments discussed earlier. Conversely, when an
activity begins early, it can continue longer,
because the next activity in the sequence
(which has its own temporal causal factors)
does not cut in until its proper time. This may
account for the negative start-spread correla-
tions discussed earlier. Patterns of correla-
tions support the idea that each activity is sep-
arately controlled. For example, the later an
activity ends in an interfood interval, the
shorter the delay between its offset and the
onset of the next activity in the sequence; the
sequence of acts does not constitute a chain
(Staddon & Ayres, 1975; Staddon & Frank,
1975). In sum, even on strictly periodic re-
inforcement schedules, postfood time is only
one of several causal factors acting on the op-
erant response.

But most experiments on interval timing in
recent years have not stuck to strictly periodic
schedules. The modal study is much more
likely to use something like the peak proce-

dure (perhaps with two or three response al-
ternatives), or some kind of comparison
method such as bisection, than a simple FI
schedule. The aim, of course, is to assess the
‘‘time sense’’ in an exact way that parallels
human psychophysics. But under these con-
ditions, the identity of the time marker is of-
ten uncertain. As Stubbs et al. (1994) point
out, ‘‘with complex stimulus arrangements,
like those used in much current nonhuman
animal research, multiple aspects of complex
stimuli affect behavior and complex stimuli
exert multiple effects on behavior’’ (p. 31).
Given the complex response and stimulus
properties of interval-timing experiments, it
may be a mistake, therefore, to expect the
kind of exclusive control by time (measured
from a single time marker) that is taken for
granted by SET and some other timing the-
ories.

Nevertheless, post-time-marker time is one
of the factors controlling a temporal depen-
dent variable such as peak time or postrein-
forcement pause. But because it is unlikely to
be the only one, we may have to lower our
expectations about the degree of quantitative
predictive precision to be expected from any
theory that deals with time alone. With this
caveat in mind, in the second half of this pa-
per we outline a memory-based approach to
temporal control.

Our theory shares two features with SET: a
separation between the animal’s estimate of
current time and its memory for times rein-
forced in the past; and the idea that interval
timing involves some kind of comparison be-
tween remembered and current time.

As we showed earlier, the arguments
against log-like encoded time offered by SET
are not compelling. There are other possibil-
ities for f(t), such as the power and MTS func-
tions, that share with the log function the
property that they decline rapidly at first and
more slowly later (e.g., Dreyfus, Fetterman,
Smith, & Stubbs, 1988; Staddon, 1983, 1984,
1997; Stubbs et al., 1994). Moreover, SET is
designed primarily to deal with steady-state
data. It has no intrinsic dynamics and does
not attempt to solve the assignment-of-credit
problem. Here we discuss a memory-based al-
ternative to pacemaker-accumulator models
that is intrinsically dynamic, suggests ways to
deal with assignment of credit, and also im-
plies logarithmic-like temporal encoding de-
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rived from data on memory. We propose that
there may be no ‘‘internal clock’’ as such at
all; that interval time discrimination is just
like any other discrimination, the only differ-
ence being in what is discriminated. In time
discrimination, we will argue, animals are
learning to discriminate between memories
of different ages and thus of different
‘‘strengths.’’

The role of the time marker. All interval timing
is timing with respect to some stimulus, such
as food reinforcement or the intertrial inter-
val, that acts as a time marker. (Multiple stimuli
may act as time markers under some condi-
tions, but we do not deal with that possibility
here.) The time marker initiates the interval
that is to be timed. The time marker, and the
different properties of different kinds of time
marker, are largely ignored by SET and other
cognitive timing theories (but see Mellon,
Leak, Fairhurst, & Gibbon, 1995), even
though there is abundant evidence that tim-
ing is more effective with respect to some
time markers than others. Reinforcement, or
a stimulus that signals reinforcement, is more
effective than neutral stimuli, for example (S.
Roberts & Holder, 1984; Spetch & Wilkie,
1981; Staddon & Innis, 1969; Starr & Stad-
don, 1974).

A time marker, like any stimulus, changes
the state of the organism. Some aspects of
that change may be more or less permanent,
but other aspects continue to change with
time, typically to grow weaker as their effects
(short-term memory) decay. (There are also
interactions among memories: retroactive
and proactive interference. There is evidence
for proactive interference between time
markers, Staddon, 1974b, 1975. We discuss
some below, but we focus here on the decay
aspect.) If the organism is sensitive to the
changing aspects of a memory, if we can dis-
cover a quantitative form for the change in
the memory variable with time, and if the or-
ganism can learn to associate specific actions
with specific values of the memory variable,
then we have provided the organism with a
potential ‘‘interval clock.’’ Moreover, we have
done so by making use of a familiar process—
short-term memory—rather than through
the postulation of a pacemaker-accumulator
‘‘clock.’’ There may also be an internal clock
that is independent of memory. But it is more
parsimonious to see first how well we can ex-

plain interval timing with known processes,
before resorting to an assumption whose
main basis is the phenomenon it is supposed
to explain.

We here develop a memory-based theory of
interval timing in answer to two questions:
What is an appropriate paradigm for event
memory? And, what does this paradigm tell
us about the way that stimulus effects change
with time?

The Event-Memor y Paradigm

The most elementary effect of stimulus
presentation is habituation, the waning of a re-
flex response to successive presentations of a
stimulus. Habituation is our paradigm for
event memory. We assume that even stimuli
that elicit no reflex response have memorial
effects that resemble those of stimuli that do
elicit a response. Thus, the dynamics of ha-
bituation provide an objective answer to our
second question: How do the effects of stim-
ulus presentation change with time?

Habituation is widely observed with many
different responses and stimuli and across
species ranging from protists to humans (Ei-
senstein & Peretz, 1973; Jennings, 1906/
1976; Peeke & Herz, 1973; Peeke & Petrino-
vich, 1984; Thompson & Spencer, 1966;
Wood, 1970). Habituation has an important
dynamic property, termed rate sensitivity
(Byrne, 1982; Carew, Pinsker, & Kandel, 1972;
Davis, 1970; Staddon, 1993; Staddon & Higa,
1996). Rate sensitivity is the surprising fact
that although habituation is more rapid and
complete when interstimulus intervals are
short than when they are long, recovery from
habituation is also more rapid after short in-
terstimulus intervals. Rate sensitivity puts cer-
tain constraints on the dynamics of short-
term memory.

Habituation can be duplicated by a process
in which response strength is the difference
between a constant stimulus effect and a leaky-
integrator short-term stimulus memory (Fig-
ure 4: u is a threshold, usually zero, X is the
stimulus input, VI is the inhibitory integrator
‘‘charge,’’ and VO is the response output).
This scheme (termed feedforward habituation;
Staddon & Higa, 1996) is a formalization of
a well-known proposal by Sokolov (1963). As
successive stimuli are presented, the accu-
mulated charge of the integrator (short-term
memory for the stimulus) increases. Because
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Fig. 4. Single-unit feedforward habituation model. In-
tegrated effects of past stimuli, VI, are subtracted from
the direct effects, X, and the above-threshold difference,
X 2 VI 2 u, determines the response strength VO.

response output is the difference between the
integrator charge and the constant stimulus
input, output response strength decreases as
successive stimuli are presented and memory
strength builds up. If the interstimulus inter-
val is too large, however, the integrator ‘‘dis-
charges’’ (‘‘forgets’’) between stimulus pre-
sentations and the system does not habituate.
Thus, the degree of habituation in the model,
as in nature, is less at longer interstimulus in-
tervals.

The single-unit model habituates less at
long interstimulus intervals than at short
ones, but posthabituation recovery is just as
rapid, because only one time constant is in-
volved. Staddon (1993) showed that a series
of at least two cascaded habituation units (the
output of the first being the input to the sec-
ond, and the second slower than the first) is
necessary to reproduce the rate-sensitive
property (earlier habituation models by Ging-
rich & Byrne, 1985, and Treisman, 1984, also
incorporate two stages). Staddon and Higa
(1996) showed that this type of model can be
extended to any number of stages.

Equations. Formally, in discrete-time nota-
tion, the single-unit feedforward model is

V (t) 5 X(t) 2 V (t) 2 u, if V . 0,O I O

5 0 otherwise. (15)

(Equivalently, VO 5 u(X 2 VI), where u de-
notes a threshold function.)

V (t 1 1) 5 a V (t) 1 b X(t),I I I I

0 , a , 1, b . 0, (16)I I

where VI is the integrated inhibitory effect of
past stimuli, VO is response strength, u is the
output threshold (usually zero, to avoid neg-
ative responding), a is a time constant that
reflects the period over which past stimuli
contribute to habituation, X(t) is the effect of

a stimulus at time t, and b is the weighting of
the stimulus effect. If a is small, only recent
stimuli contribute, and habituation is rapid if
the stimulus spacing is short enough. If a is
large, even stimuli that occurred a while ago
contribute: Habituation will occur even if
stimuli are widely spaced. Parameter b affects
habituation rate but not recovery rate, which
is determined entirely by a.

Reflex strength, VR, is the potential response
strength at any time, given a standard stimu-
lus (set by convention at unity). Reflex
strength is the response strength that would
have been measured, had a stimulus been giv-
en at time t. Thus, when a stimulus is given,
response strength equals reflex strength. Re-
flex strength for the single-unit leaky-integra-
tor habituation model with zero threshold is
just VR 5 1 2 VI, where VI is the state of the
single integrator and 1 is the value of the
standard stimulus. When the stimulus pre-
sented is the standard unit stimulus, response
strength is equal to the suprathreshold part
of reflex strength at the instant of stimulus
presentation. A plot of theoretical reflex
strength during habituation will be a saw-
tooth, rising between stimulus presentations,
and declining suddenly following each stim-
ulus. The low point of each sawtooth corre-
sponds to the response strength (i.e., the ac-
tual response level when a stimulus is
presented), and these points decline to a low-
er asymptote as the stimulus series progresses.
When stimuli cease, reflex strength rises
smoothly to an upper asymptote (spontane-
ous recovery).

Any number of habituation units can be
cascaded, with the output of the jth unit, VOj,
being the stimulus input, Xj11, to unit j 1 1.
The final output is just the output of the last
integrator in the chain.

In a cascade with zero thresholds and unit
stimulus input, it is easy to show that the net
reflex strength at the last integrator (N) in
the cascade (i.e., reflex strength of the whole
system) is just

N

V 5 1 2 V . (17)OR Ij
j51

Memory-trace strength. Spontaneous recov-
ery, the increase in reflex strength as a func-
tion of time in the absence of further stimu-
lation, is the reflex counterpart of forgetting.
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For a habituated reflex, response strength re-
covers with time as memory for the stimulus
fades. For a memory, strength decreases with
time. In the cascaded-integrator model, mem-
ory-trace strength—the recallability of a stim-
ulus—is thus the complement of reflex
strength:

N

V 5 1 2 V 5 V , (18)OM R Ij
j51

where VM is memory-trace strength.
The MTS forgetting curve in Figure 1 was

generated by a three-unit system of the sort
described by Equations 15 through 18. The
curve shows VM during spontaneous recovery
after a habituation series.

MTS Memory Timing Model

The basic idea of the multiple-time-scale
(MTS) model is that what is learned on pe-
riodic schedules is the reinforced and non-
reinforced values of the animal’s memory for
the time marker (i.e., the values of VM that
are associated with reinforcement and non-
reinforcement). (Note that some VM values
never occur: those corresponding to post-
time-marker times longer than the longest in-
terfood interval. Neither reinforcement nor
nonreinforcement can be associated with
those values.) The obvious objection to any
memory model is that, as we have just shown,
if ‘‘noise’’ is assumed to be constant, inde-
pendent of the memory value, Weber law tim-
ing requires a logarithmic memory. But in
fact, the kind of memory function necessary
to match data on rate-sensitive habituation
and Jost’s forgetting law is very close to the
logarithmic form necessary to account for the
Weber’s law and time-discrimination and dif-
ferentiation data: rapid deceleration at first,
followed by slower deceleration. Moreover, as
we will see in a moment, the data suggest that
the correct memory-decay function is only
approximately logarithmic, although in We-
ber law and bisection experiments with mod-
erate stimulus ranges, the log and MTS func-
tions are probably not distinguishable (see
Figure 1). The MTS approach to timing of-
fers the possibility of integrating a wide range
of phenomena—habituation, rate sensitivity,
partial reinforcement effects, Jost’s law, We-
ber law timing, the psychophysics of temporal
choice, and many properties of time-based re-

inforcement schedules (cf. Staddon, 1993,
1997; Staddon & Higa, 1996)—by means of a
single event-memory process.

The assumption that timing depends on
the same mechanism as habituation may also
help to solve the credit-assignment problem
(i.e., identification of the time marker). The
theorist need not assume that the animal
‘‘knows’’ the relevant time marker. Now, ev-
ery discriminable event will have its own
trace, and remembered reinforced values will
compete for control of the response. Only
good predictors will compete effectively, pre-
sumably (see Staddon & Zhang, 1991, and
Dragoi & Staddon, in press, for explicit com-
petition models of credit assignment that
might be applied to this problem). Moreover,
‘‘reset’’ will not be absolute in this type of
model (as it is in SET, absent ad hoc assump-
tions; see our discussion of reinforcement
omission, below). Events preceding the most
recent time marker affect VM; hence, they af-
fect the animal’s ‘‘time estimate.’’ There are
similar effects on reinforcement schedules:
For example, the postfood response profile
shows proactive interference effects on some
temporal schedules (e.g., Lejeune, Ferrara,
Simons, & Wearden, 1997; Staddon, 1974a,
1974b), and the effects of successive reinforc-
ers have been shown to cumulate under some
conditions (Horner, Staddon, & Lozano,
1997). The fact that events have cumulative
effects in the MTS model automatically sub-
sumes timing and counting under the same
theory, as we show in a moment.

In this section of the paper, we apply the
MTS model to static phenomena of interval
timing: proportional timing, Weber’s law, the
reinforcement-magnitude effect, the rein-
forcement-omission effect, duration-discrimi-
nation experiments, and timing and counting
experiments. We also describe how some
drug effects on timing, usually interpreted in
terms of SET, can as easily be fitted into the
MTS framework. Finally, we briefly describe
intriguing preliminary data on the neural ba-
sis of habituation dynamics that also mesh
very well with the MTS model. The MTS ap-
proach has implications for schedule dynam-
ics as exemplified, for example, by the rich
but puzzling data set on cyclic-interval sched-
ules (e.g., Higa & Staddon, 1997; Innis &
Staddon, 1971; Staddon, 1969; Staddon &
Higa, 1991), but this analysis requires discus-
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Fig. 5: Steady-state memory traces for a three-stage
MTS model for three FI schedules with reinforcers pre-
sented at four, eight, and 16 time-step intervals. R de-
notes the trace value at the instant of reinforcement. The
horizontal line represents a hypothetical start response
threshold on the four time-step schedule.

sion of learning mechanisms, which we defer
until a later paper.

Proportional timing. Any variable that chang-
es monotonically with time elapsed since a
time marker can serve as an internal clock.
Figure 5 shows steady-state memory traces
from a three-stage MTS model at three FI val-
ues; the time at which reinforcement occurs
is indicated by R in each record. Clearly, on
each schedule there is a unique VM value as-
sociated with reinforcement. For this partic-
ular MTS model, the VM value at the instant
of reinforcement is inversely related to the FI
value, but this need not always be true, nor
is it necessary for time discrimination. All that
is necessary for proportional timing is that
the trace change in the same monotonic way
from one time marker to the next on a given
schedule.

After some exposure to a given periodic
schedule, reinforcement will be associated
with a small range of VM values, which allows
the animal to learn a given response criteri-
on, illustrated for the four time-step series by
a horizontal line in Figure 5. When the trace
falls below the criterion, responding begins.
(Actual responding on FI schedules is not al-
ways break and run, of course; something
more than this simple rule will be needed for
a comprehensive truly dynamic model of tem-
poral discrimination.) If the threshold is set
a fixed distance from the value of VM*, the VM

value associated with reinforcement, then the
post-time-marker waiting time will be approx-
imately a fixed fraction of t*, the to-be-timed
interval, as long as VM is approximately loga-
rithmically related to time.

The curves in Figure 5 look like simple
traces, but the MTS model differs from most
trace models (but not all; Killeen’s, 1979,
arousal theory has similar properties) in two
respects. We have already mentioned one:
Successive stimuli have cumulative effects
(and the magnitude of the trace is propor-
tional to stimulus magnitude). But the sec-
ond property is more subtle: The form of the
trace depends on the system history. To see
this, consider two histories. One is a long se-
ries of short FIs, say four time steps; the other
is a comparable series of longer intervals, say
32 time steps. Now imagine a three-unit MTS
model, with the first two units being ‘‘fast’’
(small a values, e.g., .5, .8) and the last unit
slow (e.g., .999). After four time steps, the
first two units will still retain much of the ini-
tial value, so that each new stimulus (rein-
forcer) will add only a small increment to the
last, slow unit. The trace,

N

V 5 V ,OM Ij
j51

will therefore decline relatively rapidly, be-
cause its decay rate will be dominated by the
faster units. Conversely, after a history of 32
time-step interstimulus intervals, each stimu-
lus will deliver a substantial increment to the
slow unit because the faster units will have
lost much of their initial value after 32 time
steps. Hence, the trace decay will be domi-
nated by the slow unit. In short, memory trac-
es after a history of frequent reinforcement
will decay faster than after a history of infre-
quent reinforcement, ‘‘tuning’’ the trace to
the prevailing interstimulus interval. The dif-
ference in decay rates is not large, but it
makes the system more efficient in dealing
with a wide range of interstimulus intervals
than a simple, fixed-trace model. As we show
next, it also holds the Weber fraction approx-
imately constant over a substantial range of
timed intervals.

Weber’s law (the scalar property). The Weber
fraction, W, is defined as the change in phys-
ical stimulus value that corresponds to a small
fixed change in the value on the psychologi-
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Fig. 6. How the Weber fraction changes with interfood interval, according to different trace models. The Weber
fraction estimate is dt/ z df(t)t z , that is, 1/ z slope*interfood interval z , where slope 5 VM(t 1 1) 2 VM(t). The abscissa
shows interfood intervals from two to 32 time steps. Left panel: Exponential, log, and power functions: f(t) 5 exp(2k),
f(t) 5 lnt, f(t) 5 t-m. Parameter values are shown in the legend. Right panel: A three-stage MTS model. Parameter l
determines the three rate parameters, ai (Equation 16), according to the relation ai 5 1 2 exp(2li) (Staddon &
Higa, 1996, Equation 5); parameter bi 5 .1.

cal scale at that point, divided by the stimulus
value. Thus,

W(x) 5 dx/x, (19)

where W(x) is the Weber fraction at point x
on the stimulus scale and dx is the stimulus
change necessary to produce a just-noticeable
change in the psychological scale. Given a
particular psychological scale, z(x), with slope
S(x) 5 dz/dx at point x, therefore, dx 5 dz/
S(x). By the jnd assumption, dz is constant.
Therefore we can substitute for dx in Equa-
tion 19, dx 5 k/S(x), so that the Weber frac-
tion is

W(x) 5 k/xS(x), (20)

or, in words, the Weber fraction is inversely
proportional to slope times stimulus value.
We therefore term the quantity 1/
zslope*valuez the Weber fraction estimate for a
given psychological scale.

Fechner’s insight was to notice that We-
ber’s law—the constancy of the Weber frac-
tion—follows from two ideas: that sensory di-
mensions are encoded logarithmically, and
that internal noise is constant (independent
of the encoded value). Logarithmic encoding
means that the slope of the internal variable
is inversely proportional to its value, so that
the absolute value of the slope multiplied by
value is a constant that is inversely propor-
tional to the Weber fraction. Figure 6 shows

how the Weber fraction estimate varies as a
function of interfood interval for a variety of
trace models. The left panel compares the log
function with power and exponential func-
tions. As you can see, the exponential func-
tion always violates Weber’s law, because after
an initial decrease, the Weber fraction in-
creases with interfood interval. The Weber
fraction estimate also increases with interfood
interval for power functions, but after an ini-
tial rise, further increase is gradual for small
exponents (0 . m . 2.3). The right panel
shows trace functions from a three-unit MTS
model. For each function, we computed the
Weber fraction estimate at the instant of re-
inforcement, in the steady state (i.e., after ex-
posure to a number of interfood intervals).
The parameter, l, determines how the rate
constant, ai, changes from the first unit to the
last. The Weber fraction estimate increases
with interfood interval for the MTS model,
but relatively slowly for l values greater than
1.5, which is the range we have used to model
habituation data (Staddon & Higa, 1996). By
increasing the number of habituation units
(we used three, but physiological data dis-
cussed below suggest that humans, at least,
may have 10 or more), the constancy of the
Weber fraction can be extended to indefi-
nitely large durations. Both power and MTS
models are consistent with existing data,
which show a slow increase in the Weber frac-
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Fig. 7. Steady-state memory-trace strength on an
eight time-step FI schedule with large (L) reinforcers.
Small (S) reinforcers are substituted at the end of two
intervals. Horizontal line is the trace strength at which
reinforcement normally occurs. This level is reached
sooner following the small reinforcers (arrows).

tion (coefficient of variation) with duration
of the timed interval (Gibbon et al., 1997;
Zeiler, 1991; Zeiler & Powell, 1994).

Reinforcement-magnitude effects. A counterin-
tuitive implication of the MTS theory is that
on FI and similar interval-timing procedures
with reinforcement as the time marker, oc-
casional briefer-than-usual reinforcements
should reduce postreinforcement pause or
break point (‘‘reduce the animal’s subjective
estimate of time to reinforcement,’’ in the
language of timing theories). The prediction
is counterintuitive because it implies that an
animal will systematically misjudge time to
food on account of an objectively irrelevant
variable: the magnitude of the time marker.
This prediction is illustrated in Figure 7. The
horizontal line indicates the value of VM (i.e.,
t*, in our previous notation, where t is the
encoded value of elapsed time) that corre-
sponds to the usual time of food delivery. Be-
cause the small food deliveries increase VM

less than the large, VM will reach t* sooner
after a small reinforcement than after a large
one. Hence, the animal should begin re-
sponding sooner after a small reinforcement
than after a large one, and this effect should
be immediate. In experiments that have in-
termixed reinforcements of different dura-
tions, postreinforcement pause is directly re-
lated to reinforcement duration, just as this
analysis implies (e.g., Lowe, Davey, & Har-

zem, 1974; Meltzer & Brahlek, 1970; Staddon,
1970a; see also Perone & Courtney, 1992),
and the effect shows up during the first ses-
sion under the mixed-duration procedure.
The data also show, as this model predicts,
that the effect is a reduction in pause after
the smaller reinforcement durations, rather
than an increase after the long.

This analysis implies certain sequential de-
pendencies. For example, for the system in
Figure 7, if a small reinforcer initiates interval
N and the next interval begins with a large
reinforcer, waiting time in interval N 1 1
should also be shorter than the average post-
large wait, though not as short as the wait in
interval N. Dependencies of this sort have not
been studied extensively.

Note, however, that the shorter reinforce-
ment, shorter pause effect is not to be ex-
pected if all reinforcements are brief. Under
those conditions, the horizontal line in Fig-
ure 7 that represents the reinforced VM value
will simply be lower, and postreinforcement
pause will be adjusted to that level. In con-
formity with this prediction, chronic FI ex-
periments with large or small reinforcers
show more or less the same postreinforce-
ment pause (Bonem & Crossman, 1988;
MacEwen & Killeen, 1991). (The effect
should, and does, occur during transitions
from one reinforcement duration to another,
however.)

Reinforcement-omission effect. If a pigeon or a
rat is well trained on an FI schedule, and a
reinforcement (R) is occasionally omitted at
the end of the interval and is replaced by a
neutral nonreinforcement stimulus (N) such
as a timeout or keylight change equal in
length to the reinforcement itself, respond-
ing in the subsequent interval begins sooner
than usual. This reduction in post-time-mark-
er waiting time is known as the reinforcement-
omission effect (Staddon & Innis, 1966). Like
the reinforcement-magnitude effect just de-
scribed, it is counterintuitive, because in all
of these experiments the time to food sig-
naled by reinforcement and by the stimulus
presented in its place is always the same. Nev-
ertheless, as long as the omission is not too
frequent (no more than 50% of intervals) the
omission effect persists almost indefinitely, in
both rats and pigeons (there are some sec-
ond-order differences between rats and pi-
geons, however; see Staddon & Innis, 1969).
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The simplest way to conceptualize rein-
forcement omission is to assimilate it to a re-
duction in reinforcement magnitude: Rein-
forcement suppresses responding (i.e.,
produces a postreinforcement pause) on FI
schedules; events similar to reinforcement
suppress it less (stimulus generalization dec-
rement). The experimental evidence for the
generalization decrement interpretation is
very strong (cf. Kello, 1972; Staddon, 1970b,
1972b; Staddon & Innis, 1969). In this case,
Figure 7 can be used to illustrate reinforce-
ment omission as well as reinforcement re-
duction. In both cases, the estimated time to
reinforcement is reduced, the animal begins
responding too early in the interfood interval
and response rate across the whole interval is
higher than usual (the omission effect). Fig-
ure 7 also resembles the ‘‘incomplete reset’’
explanation for the omission effect proposed
by SET: ‘‘If the reset [of the accumulator] is
not complete when reinforcement does not
occur, then the next trial would show a short-
er pause before the break point’’ (Gibbon,
1991, p. 23). The difference between this in-
terpretation and the MTS account is that SET
says nothing about why small reinforcers
should be less effective time markers than
large ones, whereas reinforcer magnitude
(however measured) is the input variable to
the MTS theory. The MTS account is also an
advance over the generalization decrement
interpretation, because it suggests why these
effects are persistent rather than transient.
(SET is likewise silent on the onset properties
and persistence of the omission and rein-
forcement-magnitude effects.)

Nevertheless, there is a problem with the
assimilation of reinforcement omission to a
reduction in reinforcer magnitude: The re-
inforcement-omission effect depends on the
absolute value of the timed interval.4 In well-
trained pigeons, there is negligible omission
effect at short (,60 s) interfood intervals
(Starr & Staddon, 1974). Yet the effect shown
in Figure 7 should occur with any interfood
interval. This dependence on absolute inter-
food-interval value is one reason that the

4 We note, however, that no experiment seems to have
been done to see whether the reinforcement-magnitude
effect is in fact independent of interfood interval. We
assume that there is no effect, but we may be wrong, in
which case the account in this section will need to be
revised.

omission effect has been interpreted as a sort
of proactive memory interference (Staddon,
1974b). A short time after the omission stim-
ulus (the argument goes), the not-so-memo-
rable omission stimulus can still exert influ-
ence and control waiting time. But at longer
intervals, the influence of the prior reinforce-
ment overshadows the influence of the omis-
sion stimulus and, because time since rein-
forcement is necessarily longer than the
interfood interval, responding begins too
soon, producing the omission effect. (Note
the resemblance between this interpretation
of the omission effect and Jost’s memory law:
An older, initially weaker memory for the
most recent reinforcer with time overtakes
the newer, initially stronger memory for the
omission stimulus.)

In terms of the MTS model, the proactive
interference interpretation requires not one
trace but two, one for reinforcements and
one for omission stimuli. The two-trace as-
sumption is not unreasonable, because the
two events, food and a neutral stimulus, differ
in at least two dimensions, not just one as in
the reinforcement-magnitude effect. Granted
that there are separate traces for N and R,
the theoretical questions are: How will the
traces differ? And, to which trace should the
organism attend (i.e., which one will control
behavior) or will both exert some influence?
There are obviously several ways to answer
the second question, but the simplest is just
to take the traces at face value: As in the MTS
interpretation of Jost’s law (Staddon, 1997),
let the higher trace be the controlling one.5

The first question, how should the traces
differ, is trickier. It will not do to simply make
the N trace weaker, because this will not cap-
ture the absolute time dependence of the
omission effect. The assumption of a weaker
N trace also permits the R trace to be higher
than the N trace even immediately after the
N stimulus under some conditions, which vi-
olates our intuition that even a feeble stimu-
lus can be perfectly recalled right after its oc-
currence. The answer is that the N trace must
be not weaker than the R trace, but less per-
sistent. One way to implement this idea in

5 This assumes that reinforcement and the omission
stimulus are equally good predictors. A strong trace that
is a poor predictor of reinforcement will presumably be
less effective as a controlling stimulus than a weaker trace
that is a good predictor.
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Fig. 8. Memory traces during reinforcement omission. Heavy solid line: trace following reinforcement (R). Light
line: trace following omission stimulus (N). Left panel: 10 time-step interfood interval, with alternate reinforcements
omitted. Note that the N trace is higher than the R trace throughout the post-N interval. Right panel: 40 time-step
interval. Note that the R trace overtakes the N trace early in the interval (point A). Parameters: bi 5 1 2 ai; a1 5 .7,
a2 5 .85, a3 5 .999. All thresholds were zero, except the threshold between the second and third integrator in the
omission cascade, which equaled .75; the threshold affected only input to the integrator, and the memory-trace
strength was computed the same way for both traces (Equation 18). Reinforcement and omission magnitude both
equaled 1.

our scheme is shown in Figure 8, which shows
the trace configuration for an alternating
NRNR sequence at two interval durations, 10
and 40 time steps. Note that in the left panel,
although the N trace is generally lower than
the R trace, nevertheless in each post-N in-
terval, the N trace is higher than the R trace
throughout the interval. On the other hand,
in the 40 time-step intervals, the two traces
cross over early in the interval, that is, the N
trace loses to the preceding R trace part way
through each interval. Because the R trace
after it crosses over is well below the value
associated with reinforcement, responding
begins too soon in post-N intervals, which is
the omission effect.

In order to obtain the result in Figure 8, it
was necessary only that the N and R processes
differ in the threshold between the second
and third integrators. In the example, u2 for
the N process is greater than zero, which has
the effect of limiting the input to the third,
and slowest, integrator in the cascade, mak-
ing the N trace intrinsically less persistent
than the R trace.6 This change makes little

6 It may seem odd to make threshold a function of the
stimulus, but what this means in practice is just that a
stimulus, such as N or R, cannot be adequately charac-
terized by a single number. At least two are required, one

difference when the interfood interval is
short, because the V value for the third inte-
grator is small for both N and R traces, so
that there is little difference between them,
and no omission effect. But when the inter-
food interval is long, V3 is substantial for the
R trace but (because of the threshold) small
for the N trace, yielding the omission effect.

Bisection and relative-duration discrimination.
As we have seen, bisection at the geometric
mean is consistent with log-like encoding of
time and inconsistent with scalar timing (Gib-
bon, 1981), although a later version of SET,
with some additional assumptions, is able to
fit these data (Allan & Gibbon, 1991). But
SET does not seem to have been applied to
extensive data on relative-duration discrimi-
nation reported by Stubbs and his associates
(e.g., Dreyfus et al., 1988; Stubbs et al., 1994).
The main features of these data are consis-
tent with a trace model that is not precisely
logarithmic. The power function, with small
exponent (which is a static approximation to
the MTS model), provides the best static ac-
count.

corresponding to our stimulus strength variable, X, and
the other to persistence of effect (‘‘memorability,’’ if you
like). The threshold vector is then a function of the
memorability variable.
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The usual procedure in these experiments
is for pigeons to peck a center key to produce
a red light of one duration that is followed
immediately by a green light of another du-
ration. When the green center-key light goes
off, two yellow side keys light up. The animals
receive food reinforcement for pecking the
left side key if the red light was longer, and
receive food for pecking the right side key if
the green light was longer; this is a relatively
simple task that pigeons master easily.

How does discrimination accuracy depend
on both relative and absolute duration of the
stimuli in these experiments? The main ef-
fects are that discriminability is directly relat-
ed to the ratio of the two stimuli and is in-
versely related to the duration of the second
stimulus. For example, average discriminabil-
ity when the short and long stimuli are in 4:1
ratio is higher than when they are in 2:1 ratio.
But if we look at 4:1 pairs when the 4 stimulus
is first and the 1 stimulus second, versus the
opposite order with 1 stimulus first followed
by 4, accuracy is better in the case in which
the 4 stimulus is first. As Stubbs et al. point
out, the second finding is consistent with a
memory account, because memory for the
first stimulus will be weaker when the second
stimulus is the longer of the two. The first
finding, of course, follows from log-like tem-
poral encoding.

These experiments show the importance of
a plausible theory for settling on a principled
(i.e., nonarbitrary) response rule. In the case
of procedures like FI schedules or the peak
procedure, the response rule is relatively
straightforward: Respond at times when food
is probable and not at other times. No com-
parison (other than between remembered
and current time of reinforcement) is re-
quired. But in the Stubbs et al. (1994) stud-
ies, the animal must somehow compare en-
coded red and green time intervals and
respond differentially depending on the out-
come of the comparison. A formal analysis
must first identify the type of comparison and
then show how it is applied to reduce the
comparison problem to a decision on a single
decision axis (just like the threshold analysis
in SET, where the decision axis is linear en-
coded time and a threshold makes the re-
spond/not-respond decision).

In the MTS theory, the transformation of
actual time, t, into encoded time, f(t), is ap-

proximately logarithmic (only approximately,
because we know that the Weber fraction in-
creases slowly with absolute time rather than
remaining constant, as pure logarithmic en-
coding requires). As we saw, both the power
function (with small exponent) and the MTS
model have this property (Figure 6). The
power function

f(t) 5 ktw, w , 0, (21)

where k is a constant and w is an exponent
on the order of 20.1 was used by Stubbs et
al. (1994) and Dreyfus et al. (1988; see also
Staddon, 1984) to analyze their data, and we
present a slightly expanded version of their
account here. The response rule can be de-
rived by asking: What simple transformation
of trace values (of the onset and offset times
of the red and green stimuli) at the time of
choice best predicts reinforcement on this
procedure? The answer, for log-like func-
tions, is that the difference between traces pro-
vides a good estimate of relative stimulus du-
ration.

Let TR and TG be the durations of the red
and green stimuli on a given trial. The rein-
forcement contingencies are: If TR/TG , 1,
reinforcement is contingent on Response A;
if TR/TG . 1, reinforcement is contingent on
Response B. To estimate TR and TG, the or-
ganism presumably has available traces cor-
responding to every discriminable change in
stimulation. In this case, the relevant events
are trial onset and the offset of the red stim-
ulus (i.e., the time of the red-green transi-
tion). The values at time of choice of traces
initiated by these events constitute the input
to the decision process. Traces for two trial
types in which TR 1 TG 5 constant are illus-
trated in Figure 9. Trace A is the trace for
trial onset; Traces B and B9 are for the time
of the red-green transition: B is for the case
in which the red stimulus is shorter and B9 is
for the case in which it is the longer. C rep-
resents the time of choice (green stimulus
offset).

At the time of choice (i.e., just after the
green stimulus goes off), the value of the tri-
al-onset trace is f(TR 1 TG) and the value of
the red-offset trace is f(TG), where f is the log-
like time-encoding function. Perhaps the sim-
plest theoretical assumption we can make is
that the organism is able, in effect, to com-
pute the difference between pairs of traces.
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Fig. 9. Relative-duration discrimination. The graph
shows hypothetical memory traces, f(t), for three stimu-
lus onsets. A is the time of onset of the red stimulus
(Stubbs et al., 1994), which ends either at B or B9, de-
pending on whether red is shorter than green or the
reverse. In either case, the green stimulus ends at C. On
each trial the subject must base his choice at time C on
two trace values: the trace of trial onset, beginning at
time A, and the trace of the red-green transition, whose
trace begins at time B or B9, depending on whether
green or red is longer.

Fig. 10. Trace difference versus ratio of red-green durations in the Stubbs et al. (1994) experiment. Light lines:
Prediction from a power-function trace. Trace difference was computed as zf(tR1G) 2 f(tG)z, where f(t) 5 t-.15, f(tR1G)
is the trace of trial onset, and f(tG) is the trace of the onset of the green stimulus (i.e., the second stimulus in the
red-green sequence). Each curve is for the same set of red-green ratios but a different absolute value for the base
duration, from 2 to 24 s. Heavy line: Prediction for the log function f(t) 5 lnt. The absolute-duration functions
collapse into a single function, because only duration ratio matters for the log trace. Note the logarithmic abscissa.

This is done for the log and power functions
for f (Equation 21) in Figure 10, which con-
veys the same information as the top panel of
Figure 6 in Stubbs et al. (1994). Each curve
is for a given base duration, from 2 to 24 s.
Each base duration is compared with five
comparison durations in ratios of 0.25, 0.5, 1,

2, and 4—approximately the range studied in
the Stubbs et al. experiment. The vertical line
at 1 on the abscissa divides pairs in which red
is longer than green from those in which
green is longer than red. The horizontal
dashed line is a possible criterion: Above cri-
terion make Response A, below make Re-
sponse B.

The first thing to notice is that with pure
log encoding (heavy line), performance is
the same at a given red-green ratio, indepen-
dent of the absolute time values. This is in-
consistent with the pattern in the data, which
shows differences between long and short ab-
solute durations even if their ratio is the same
(Stubbs et al., 1994, Figure 6). The pattern
in the data is closer to what is predicted by
the power form (light lines): At a given du-
ration ratio, performance accuracy (the slope
of the difference function) is always higher
for shorter absolute durations. Second, for a
reciprocal pair of red-green durations (equi-
distant from the 1:1 line on the log scale in
the figure), such as 1:2 or 2:1, the distance to
the criterion (i.e., accuracy) is always greater
for the 2:1 pair than for the 1:2 pair: Accuracy
is better when the shorter stimulus is second.
Because it is also concave upward, like the
MTS functions, this prediction is true for the
log function also. Third, because the func-
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tions with longer base durations are lower,
the theory predicts an increasing tendency to
make Response B (‘‘red shorter’’) at longer
absolute durations (when the red-green ratio
is held constant), a shift in bias also seen in
the data (Dreyfus et al., 1988; Stubbs et al.,
1994). Finally, the smaller the red-green ratio
(i.e., the longer the second stimulus in rela-
tion to the first), the less the effect of base
duration; Stubbs et al. report good agree-
ment with data on this point also.

The data of Stubbs et al. (1994) do contain
one apparent anomaly: In a comparison of
broad and restricted ranges of times, they re-
port that performance on individual pairs in
the restricted-range condition was worse than
in the extended-range condition, a result in-
compatible with any analysis that treats each
pair in isolation. They suggest that the longer
trial duration under the restricted-range con-
dition may be responsible. We have two com-
ments. First, a dynamic MTS analysis may give
predictions that deviate slightly from the stat-
ic power-function approximation and so may
explain the range effect, because any dynam-
ic analysis will carry over some information
from one comparison pair to the next. We are
not yet ready to present such an analysis for
this situation, because of uncertainty about
the proper learning rule (see below). We
have intentionally restricted discussion so far
to situations that require only minimal as-
sumptions about learning. Second, our expla-
nation depends upon the assumption that
subjects in this situation learn, in effect, to
apply a differencing rule. The competing
rule is an absolute one (Dreyfus, Fetterman,
Stubbs, & Montello, 1992): to learn to link
Responses A and B to specific green dura-
tions. Although Stubbs et al. found little evi-
dence for control of behavior by absolute
stimulus duration, it is still conceivable that
learning the differencing rule is easier given
a larger set of exemplars (i.e., in the extend-
ed-range condition). Again, without some for-
mal model of the process by which the animal
selects among response rules, this can only be
a conjecture.

Our trace-difference analysis explains rela-
tive-duration discrimination by means of a
single response criterion on a trace-differ-
ence decision axis. Notice that this process is
not sufficient to discriminate among three al-
ternatives, which is what is required in the

temporal version of the ‘‘intermediate-size
problem’’ (i.e., learning to make one of three
responses depending on whether an inter-
mediate duration appears first, second, or last
in a sequence of three durations). Given
three durations and three traces, a single cri-
terion is sufficient to identify the longest or
the shortest, but a second criterion is re-
quired to identify the intermediate duration.
Fetterman (1998) has recently reported that
pigeons can indeed identify the longest or
the shortest in a series of three but fail to
perform reliably above chance (or to show
transfer to novel durations) in identifying the
intermediate duration. Apparently pigeons
are limited to a single criterion.

Overall, our analysis makes two important
theoretical points: (a) The event trace is log-
like, but two kinds of empirical data show that
it deviates systematically from the log form:
the gradual increase in the Weber fraction at
long times, and the effect of absolute time on
performance at the same red-green ratio in
the Stubbs procedure. Both the power and
MTS trace functions satisfy these conditions.
(b) The response rule and memory-trace
form are to a degree complementary. We
think that differencing is a simpler assump-
tion than the forming of ratios and is thus
theoretically preferable. Nevertheless, a log
trace with a differencing response rule gives
similar results to linear time and a ratio re-
sponse rule. The problem for SET is that de-
viations from Weber’s law and absolute-time
effects in relative-duration-discrimination
data require systematic deviations from the
log form, which are easily accommodated
within the trace framework but not so easily
within the linear-time framework of SET.

We are not sure how to apply SET to rela-
tive-duration experiments. Given that two
times must be compared, must SET assume
two separate accumulators? Presumably the
values of the red and green accumulators
must then be compared with two reference-
memory values. What response rule would be
appropriate? Because encoding is linear, a
differencing response rule could satisfy the
reinforcement contingencies. There is an ex-
perimental test of the view that performance
in the Stubbs procedure is driven by com-
putation of differences between linearly en-
coded times, because such a model gives no
special status to zero difference. In other
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words, differencing animals should be able to
learn easily to discriminate between two ran-
domly chosen times, x and y, that differ by a
fixed amount z versus two randomly chosen
times that differ by 0 or 2z. But because this
discrimination cannot be done by any simple
operation on log-like traces, our theory must
predict that pigeons should fail at it. Con-
versely, animals should have no difficulty dis-
criminating on the basis of duration ratios
(e.g., discriminating between randomly cho-
sen times in fixed ratio, x/y 5 k, vs. ratios of
0.5k and 2k). The first experiment does not
appear to have been done, but Fetterman,
Dreyfus, and Stubbs (1989) have done a ratio-
discrimination experiment. They have shown
that pigeons can learn to make one response
if two successive durations are in a ratio great-
er than 2:1 and a different response if the
ratio is less than 2:1, for example. Moreover,
the pigeons showed much the same accuracy
at a range of different criterion ratios, a result
that is perfectly compatible with our single-
criterion log-like trace model.

Absolute duration discrimination and the
‘‘choose-short’’ effect. There is an interesting
asymmetry in time discrimination that pro-
vides very strong support for a decaying-trace
model. In a version of the delayed matching-
to-sample procedure, pigeons and rats can
readily learn to make one response following
a short (e.g., 2-s) stimulus and another re-
sponse following a long (e.g., 8-s) stimulus,
even if the opportunity to respond is delayed
slightly after stimulus offset (e.g., Church,
1980; Spetch, 1987; Spetch & Wilkie, 1982).
But if longer choice delays are occasionally
introduced, performance worsens dramatical-
ly and in a biased way: The frequency of
‘‘short’’ errors increases with delay. This is
known as the choose-short effect (Grant, Spetch,
& Kelly, 1997; Spetch & Wilkie, 1982). As
Stubbs et al. (1994) point out, this result is
almost trivially explained by our theory. In
delayed match-to-sample duration-discrimi-
nation experiments, the only reliable corre-
late of stimulus duration is the difference in
strength (at the time of the response) be-
tween the trace of stimulus offset and the
trace of trial onset. Formally, dS 5 f(D) 2 f(TS

+ D) for the short stimulus and dL 5 f(D) 2
f(TL 1 D) for the long, where TS and TL are
the stimulus durations and D is the choice
delay. With the power form for f, this differ-

ence, d, will obviously always be larger for the
long stimulus than for the short, dL . dS. But
if D is suddenly increased, dL will decrease
much more than dS and will move in the di-
rection of dS*, the reinforced value of dS (i.e.,
the situation will seem more similar to the
situation in which a short response is appro-
priate). The argument is illustrated graphi-
cally in Figure 11.

This analysis predicts the opposite effect if
D is decreased, however, because reducing D
shifts dS in the direction of dL*, the reinforced
value of dL. To see this, imagine that D2 (rath-
er than D1) in Figure 11 is the training delay
and D1 is the testing value. In an experiment
with TS 5 2 s, TL 5 8 s, and D 5 10 s, Spetch
(1987) has shown that pigeons perform ac-
curately at the training delay, show a short
bias when occasional longer delays are intro-
duced, but show choose-long errors when
shorter delays are introduced. The symmetry
between the choose-short and choose-long ef-
fects strongly supports our trace analysis.
Note that this analysis implies that pigeons
trained with two values for D in a situation
will perform worse on trials with the longer
D value than they would if trained with that
value alone, because there is no longer a
unique reinforced trace value for the short
and long samples. (In designing such an ex-
periment, care will need to be taken to en-
sure that the animals cannot use prospective
encoding; cf. Grant et al., 1997.)7

The symmetry between timing and counting.
There are close resemblances between the
discrimination of time and number. SET ex-
plains timing as a sort of counting (of pace-
maker pulses), which implies obvious similar-
ities between the two and appears to support

7 Spetch and Rusak (1992) and Sherburne, Zentall,
and Kaiser (in press) have found that the choose-short
effect is abolished if the intertrial-interval stimulus and
the stimulus during the retention interval are different.
At least two explanations—‘‘confusion’’ (Sherburne et
al.) and the ‘‘relative-duration hypothesis’’ (Spetch & Ru-
sak)—have been offered for this effect. But only our
trace account, as far as we know, can account for both
the choose-short and choose-long effects and the sym-
metrical choose-small effect in number discrimination
(no one seems to have yet demonstrated a choose-large
effect). We conjecture that the differential-stimuli effect
may reflect stimulus-specific prospective encoding (i.e.,
remembering the correct response rather than the ex-
perienced duration), which is possible when intertrial-
interval and retention-interval stimuli are different but
not when they are the same.
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Fig. 11. The choose-short effect. The curves show the difference between the power-form traces of stimulus offset
and trial onset for a short (2-s) and a long (8-s) stimulus. Vertical line D1 is the usual delay before a response is
made, and the two threshold lines, labeled long threshold and short threshold, are learned appropriate to D1. A
simple response rule is: Respond long if the trace value is closer to the long threshold, respond short if it is closer
to the short threshold. If a long delay, D2, is occasionally introduced, the trace value for the long stimulus is now in
the vicinity of the short threshold, so the subject will respond short to the long stimulus. The trace for the short
stimulus has moved below the short threshold, but is still closer to the short than to the long threshold, so short will
be the response here also.

the pacemaker-accumulator approach. Meck,
Church, and Gibbon (1985) proposed that
the same process might underlie both types
of discrimination—an extension of SET that,
in its most recent version, allows a single ac-
cumulator to count both pacemaker pulses
and events. The input to the accumulator is
controlled by what Meck terms a ‘‘mode
switch’’ that ‘‘gates the pulses to the accu-
mulator in one of three different modes de-
pending on the nature of the stimulus, giving
this mechanism the ability to act as both a
counter and a timer based on the represen-
tation of the variable in the accumulator’’
(Meck, 1997, pp. 141–142). The three modes
are ‘‘run,’’ ‘‘stop,’’ and ‘‘event.’’ ‘‘Run’’ ac-
cumulates pulses from stimulus onset until its
end; ‘‘stop’’ accumulates pulses as long as a
stimulus is present (i.e., it accumulates across
successive stimulus occurrences); and
‘‘event’’ counts events. By suitably combining
these modes, the mode-control version of
SET can model the many similar psychophys-
ical properties of time and number discrimi-
nation.

W. Roberts (1997) applied an earlier,
‘‘dual-mode’’ version of the Meck et al.
(1985) mode-control model, with two accu-

mulators, one for time and one for number,
and two independent switches, to experi-
ments on number discrimination. This model
can count pacemaker pulses (time), events
(number), or both (or, presumably, neither),
depending on the switch settings. Roberts
gives a good summary of the workings of this
system:

In order to store the time or number of events
recorded in an accumulator, numbers of puls-
es are sent from the accumulators to . . . work-
ing memory; values stored in working memory
at the time of reward are transmitted to the
reference memory for long-term storage. Fi-
nally, response decisions are made in a com-
parator. The comparator is fed information
from both working and reference memory.
From the working memory, it continuously re-
ceives a record of the number of pulses stored
in the accumulators. From reference memory,
it retrieves criterion quantities of pulses for
comparison with . . . working memory. Com-
parison is based on a ratio of the absolute dif-
ference between the criterion value from ref-
erence memory (RM) and the current value
in working memory (WM) divided by the RM
value. (W. Roberts, 1997, p. 192)

When the ratio of zRM 2 WMz/RM crosses a
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Fig. 12. The choose-small effect, simulated by a three-unit habituation model (inset). Animals are trained at short
response delay D1 and set their response criteria accordingly (two- and eight-flash thresholds). When tested at a
longer delay, D2, trace strength following the eight-flash stimulus shifts in the direction of the criterion for the two-
flash stimulus, producing a choose-small bias.

threshold, responding is triggered, as already
described.

W. Roberts (1997) uses an augmented ver-
sion of dual-mode SET to account for the
number-discrimination equivalent to the
choose-short effect in time discrimination
(Fetterman & MacEwen, 1989). He trained
pigeons to make one response following a se-
ries of eight flashes and another after two
flashes, both series occurring over a 4-s peri-
od to eliminate time as a cue. After training,
the opportunity to respond was delayed for 2,
5, or 10 s, with dramatic results: Responses to
the two-flash stimulus remained high, but re-
sponses to the eight-flash stimulus rapidly de-
clined with increasing delay, a choose-small
effect. Roberts explains this effect by adding
a ‘‘loss’’ assumption to the dual-mode model:
the idea that working memory loses pulses
over time. (His assumption of a fixed-frac-
tional loss per unit time [p. 199] amounts in
fact to exponential decay.) Roberts goes on
to make the argument that as time elapses,
the number of pulses in the accumulator af-
ter the eight-flash stimulus will approach the
criterion for the two-flash stimulus, hence the
increase in small responses as the response
opportunity is increasingly delayed. He con-
cludes that the data ‘‘support the ideas that
time and number are represented by the
common mechanism of accumulated pulses
and that pulses are progressively lost from

both time and number accumulators over a
retention interval’’ (pp. 200–201).

What these data in fact support is simply
the idea of memory-trace decay. Nothing in
the choose-small effect demands pulses or
dual accumulators. Because the MTS model
is driven by events and its output accumulates
their decaying effects, the MTS model auto-
matically explains the resemblances between
time and number discrimination. It explains
the choose-small effect directly, without any
additional assumptions and with none of the
elaborate apparatus postulated by the mode-
control versions of SET. The argument is triv-
ial. Each flash is an input event and incre-
ments the integrator cascade. Two flashes in
4 s produce a lower output (trace value) than
eight flashes in 4 s. If the criteria for choice
are set for a short response delay, then at lon-
ger delays, the trace value following eight
flashes will approach the two-flash criterion;
hence, responding will increasingly be to the
2-s key: the choose-small effect. The MTS ac-
count is illustrated in Figure 12.

Because it is real time, the MTS account
makes specific predictions about the effects
on choice of the temporal pattern of flashes
within the counting period. We do not know
how well these predictions will match the
data, because the necessary experiments re-
main to be done. But it is already clear that
known similarities between timing and count-
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Fig. 13. Immediate-transient (heavy line) and gradu-
al-persistent (light line) effects of dopaminergic and cho-
linergic drugs, according to Meck (1996). Only effects to
increase T are shown; there are also effects of both kinds
that decrease T.

ing, such as Weber law variance and the
choose-small effect, are immediately implied.

Drug effects. Dopaminergic and cholinergic
drugs can affect timing behavior. Meck (1983,
1996) has identified two main kinds of effect
on a temporal dependent variable (call it T)
such as peak time in the peak procedure: T
can either increase or decrease under the in-
fluence of the drug, and these effects can be
either immediate (T increases or decreases
soon after the drug is administered, with an
inverse rebound when drug administration
ceases) and transient (T returns to the pre-
drug level under continued administration,
and following the rebound when administra-
tion ceases); or gradual (the change in T oc-
curs over several days), in which case it usu-
ally persists until the drug is no longer
administered, when T slowly returns to the
predrug level. Interestingly, there seem to be
no examples of the other two logical possi-
bilities: immediate, persistent effects or grad-
ual effects that eventually dissipate. Two of
these effects—immediate-transient increase
in T and gradual-persistent increase in T—
are shown schematically in Figure 13 (see
Meck, 1996, Figures 4 and 5 for comparable
data showing decreases as well as increases).

The immediate-transient change is usually
termed a clock-type effect in SET. It is attri-
buted to a change in ‘‘clock speed.’’ If the
clock runs faster under the drug than previ-
ously, the animal’s estimate of reinforcer time
will be reached too soon: T, the temporal de-
pendent variable, will therefore decrease. Do-
paminergic agonists such as methamphet-

amine have this speeding-up effect.
Conversely, dopaminergic antagonists such as
haloperidol have the opposite effect: Clock
speed is decreased so that T increases (Figure
13, heavy line).

The gradual-persistent effect is usually
termed a reference-memory-type change in
SET. The interpretation here is that ‘‘mem-
ory-storage speed’’ is altered by the drug.
There is no immediate change in perfor-
mance ‘‘because the vast majority of time val-
ues stored in reference memory were accu-
mulated during baseline training under
conditions of normal memory-storage speed,
not one distorted by drug administration’’
(Meck, 1996, p. 237). As the distorted mem-
ories accumulate during training under the
drug, T shifts appropriately. The cholinergic
antagonist physostigmine produces a slow de-
crease in T, whereas the agonist atropine pro-
duces a slow increase in T (Figure 13, light
line).

Our theory provides alternative interpre-
tations for these effects. The immediate-tran-
sient change resembles the reinforcement-
magnitude effects discussed earlier. Reducing
reinforcement magnitude, for example, pro-
duces a transient decrease in T; increasing re-
inforcement magnitude produces a transient
increase. Thus, one alternative interpretation
of so-called clock-speed effects is that they
cause an immediate change in the memora-
bility of the time marker. Tests of drugs that
produce these effects with a variety of differ-
ent time markers may therefore produce
quantitatively different effects on T: A given
drug and dose may produce a large effect with
a not-very-salient time marker like a neutral
timeout and a much smaller effect with a highly
salient time marker like a large reinforcer. It
is also possible that immediate-transient
changes reflect changes in the time constants
of the integrator chain. This interpretation is
close to the SET clock-speed-change interpre-
tation of these effects. In this case, differenc-
es between different time markers should be
minimal. Quantitative experimental data,
showing the effects of different dopaminergic
drugs at different T values, could help decide
this issue.

Another prediction is that other drugs
known to affect short-term memory (e.g., in
delayed match-to-sample experiments) should
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also produce immediate-transient effects on
time discrimination.

The gradual-persistent effect is much the
same as if the to-be-timed interval were to be
changed. The change in T here is also usually
(but see Higa & Staddon, 1997) gradual, but
persists as long as the new interval is main-
tained. In the MTS model a gradual-persis-
tent effect would be interpreted as a change
in the remembered value of VM*, VM9*, the
trace value associated with reinforcement.
Under normal conditions, VM9* is approxi-
mately equal to VM*, which is why the relation
between T and the actual to-be-timed interval
is usually a power function with unit slope,
that is, linear (see the discussion of power
functions and log time, above). If long-term
memory is imperfect, however, the two values
may drift apart, so that at the time of testing,
the animal may show a too-long or too-short
value of T, depending on the direction of
drift. This interpretation suggests that the
amount of ‘‘memory shift’’ under a given
drug regimen may depend on the time be-
tween experimental sessions (i.e., the time al-
lowed for drift). If sessions are closely spaced
there may be less drift than if they are 24 or
48 hr apart. It will also be interesting to look
at the power-function exponent when steady-
state T values under drug and no-drug con-
ditions are compared.

Drug versus no-drug performance on cyclic
interval schedules, in which interfood inter-
val N depends on the duration of preceding
interfood interval N 2 1 (Higa & Staddon,
1997; Innis & Staddon, 1971), might also
shed light on these two hypotheses. On pe-
riodic schedules, according to SET, reference
memory contains many values of the time of
reinforcement, t*, which is why cholinergic
drugs, which distort the translation from
working to reference memory, take some
time to have an effect on temporal perfor-
mance (gradual-persistent effects), ‘‘because
the vast majority of time values stored in ref-
erence memory were accumulated during
baseline training under conditions of normal
memory-storage speed, not one distorted by
drug administration’’ (Meck, 1996, p. 237).
On cyclic schedules, however, performance is
strongly determined by the preceding inter-
food interval, which implies that reference
memory under these conditions contains few
t* values. Consequently, if we read SET cor-

rectly, on cyclic schedules cholinergic drugs
should have their effect within a few intervals,
rather than taking several sessions. MTS the-
ory seems to make a similar prediction, albeit
from different premises. If we interpret grad-
ual-persistent effects as drift in VM9*, then the
time for drift on cyclic schedules is much less
than on regular FI schedules; hence, the ef-
fect of the drug should be less.

There are probably other interpretations
within both frameworks. Our point here is
simply that there seems to be nothing in
these drug data that uniquely favors the SET
interpretation.

Brain mechanisms. We believe that behavior-
al theories stand on their own feet. They are
valid to the extent that they describe behav-
ioral data accurately and economically. We ar-
gued earlier that given the richness of physi-
ology, the notion of ‘‘biological plausibility’’
is a slippery one. Is a counter and pacemaker
more or less plausible than a leaky integrator?
Is a system made up of artificial neurons
more ‘‘physiological’’ than one composed of
thresholds and capacitors? Questions like
these seem destined to be inconclusive. All
that really matters in science, we suspect, is
how much can be explained with how little
(Staddon & Zanutto, 1998). Nevertheless, the
pacemaker-accumulator assumptions of SET
have inspired a vigorous, and to some degree
successful (Gibbon et al., 1997; Meck, 1996),
search for underlying physiological mecha-
nisms. It is worth mentioning, therefore,
some recent real-time physiological data that
seem to fit remarkably closely the basic as-
sumptions of MTS theory.

MTS timing theory is based on five ideas,
one about timing and four about habituation:
(a) temporal learning uses short-term mem-
ory traces as discriminative stimuli; (b) the
properties of short-term memory can be un-
derstood through the mechanisms of habit-
uation; (c) habituation is a process in which
responding is inhibited by a leaky integrator
system driven by stimulus input; (d) habitu-
ation units are cascaded; and (e) the faster
units are on the periphery and the slower
ones are further downstream. In a recent re-
port, Glanz (1998) describes a study reported
to the American Physical Society by William-
son and his colleagues that has identified
physiological counterparts for the last three
assumptions. Williamson’s group used a su-
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perconducting quantum interference device
(SQUID) to detect tiny changes in human
brain magnetic activity. Their system record-
ed maps of whole-brain activity that could be
updated every few milliseconds. In the sim-
plest experiment, they looked at brain activity
following a single 0.1-s stimulus: ‘‘In quick
succession, over less than half a second, about
a dozen patches lighted up like pinball bum-
pers, starting with the primary visual cortex
in the occipital lobe at the back of the brain’’
(p. 37). This activation in rapid succession is
precisely what we would expect from a series
of cascaded units, where the SQUID is de-
tecting changes in Vi, the activation of each
integrator. In a second experiment that was
in effect a two-trial habituation study with
brain activity as the reflex response, subjects
were presented twice with a brief (0.1-s)
checkerboard stimulus.

They showed the checkerboard twice, with a
varying time interval between the displays, to
see whether the first stimulus had left any kind
of impression along the way. For very brief in-
tervals—10ths of a second—only the areas of
initial processing in the back of the brain fired
on the second flash, while the others were si-
lent. . . . But as the interval was increased to
10, 20, or even 30 seconds, the downstream
areas began firing on the second flash, with a
strength finally approaching that of the initial
pop. . . . The data imply, says Williamson, that
each site has a distinct ‘‘forgetting time,’’
ranging from 10ths of a second in the primary
visual cortex—the first stage of raw process-
ing—to as long as 30 seconds farther down-
stream. (p. 37)

Again, this is precisely the behavior of our
cascade of habituation units. Because the ini-
tial units have fast time constants, they block
input to the later, slower units as long as the
interstimulus interval is short enough that
they have not had time to discharge (‘‘for-
get’’) between stimuli; hence, no response of
the ‘‘downstream’’ units to the second flash
at a short interstimulus interval. But when the
interstimulus interval is long, the initial units
have already discharged, allowing the stimu-
lus to pass through to later units, which can
therefore respond. Williamson continues,
‘‘The memories decayed with the simplicity
of a capacitor discharging electricity—expo-
nentially with time—and the later an area’s
place in the processing queue, the longer its

memory time was’’ (p. 37). Apparently brain
‘‘memories,’’ like our leaky integrators, forget
exponentially.

Whether other studies will provide addi-
tional physiological counterparts for the MTS
theory remains to be seen. But we do believe
that the jury is still out on whether pacemak-
er-accumulator theories or the MTS theory
have the stronger claim to biological plausi-
bility.

CONCLUSION

The ability to discriminate between stimuli
of different durations and to respond differ-
entially at times associated with the presence
or absence of reinforcement is widespread in
the animal kingdom. The clock-like proper-
ties of this behavior, which can be much im-
proved with suitable training, has made the
inference of a real ‘‘internal clock’’ almost
irresistible. There are many kinds of clock,
but the best ones operate by counting regular
(or even irregular) pulses. Unfortunately, the
very power of pacemaker-accumulator clocks
is the main argument against them as models
for temporal discrimination. The property
that the longer the interval (and the larger
the number of accumulated counts), the
more accurate pacemaker-accumulator clocks
become, is quite different from the most re-
liable feature of animal timing, which is that
relative accuracy is essentially constant over a
limited range of times, and actually declines
over longer ranges. The Weber law property
can be reconciled with Poisson variability in
the pacemaker only by additional assump-
tions—that rate variation occurs only between
and not within trials—or by assuming such a
fast pacemaker that other, ‘‘scalar’’ sources of
variance make the major contribution and
the pacemaker-accumulator feature becomes
irrelevant. In either case, the real theoretical
work is being done by something other than
the pacemaker-accumulator mechanism, be-
cause of its fundamental incompatibility with
Weber’s law.

What is left in scalar expectancy theory,
once the pacemaker-accumulator property
has been sidelined, is the assumption that
time is encoded linearly, with scalar variance.
But as we have seen, the experiments that ap-
pear to argue for linear (rather than log-like)
encoding of time are open to alternative in-
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terpretations and cannot prove their point.
Moreover, there are several lines of argument
that favor log-like encoding: bisection data, a
theoretical argument that derives power-func-
tion empirical relations from log-like encod-
ing of working and reference memory, and
data on absolute and relative temporal dis-
crimination. The choose-short effect provides
very strong evidence for a trace interpreta-
tion of time discrimination and is incompat-
ible with pacemaker-accumulator-type mod-
els, absent auxiliary assumptions. Other data
that appear to support SET—start and stop
distributions and start-stop and start-spread
correlations in the peak procedure, for ex-
ample—only partially confirm the simple ver-
sion of SET, can only be partially accommo-
dated via extra assumptions (thresholds,
variation in reference memory), but can also
be explained in other ways. Drug effects com-
patible with SET are also compatible with the
MTS approach, and both approaches seem to
make some sense physiologically.

What remains by way of direct support for
the pacemaker-accumulator account are the
many very precise quantitative matches be-
tween empirical distributions of peak times
and related measures and predictions from
versions of SET (e.g., Church & Gibbon,
1982). The most striking fact about these dis-
tributions (e.g., in peak-procedure experi-
ments) is that they are more or less symmet-
rical, rather than skewed, as would be
expected if the response distribution were di-
rectly derived from normal variation on a log-
like internal code. We have not discussed
these distributions in detail in this article for
two reasons, one general, the other specific.
The specific reason is suggested by Platt’s
(1979) comment quoted earlier: ‘‘How can
the relationship between [a] stimulus and its
internal representation be inferred from re-
sponding which may be the result of addi-
tional transformations required by the rein-
forcement contingencies?’’ (p. 21). That is,
granted we know that the distribution of re-
sponses in time in procedures like the peak
procedure can be molded by varying the
probability of reinforcement and nonrein-
forcement at different times, how can we set-
tle on a particular distribution as the correct
one? The problem can perhaps be clarified
comparing some experimental results. An FI
schedule requires the specification of a single

parameter, the interval duration, but the
peak procedure requires us to specify more
than four parameters: the to-be-timed inter-
val duration, the duration and probability of
‘‘empty’’ trials, and the duration of the inter-
trial interval. The additional parameters spec-
ify the distribution of the intertrial interval if
it is variable. Now consider the peak proce-
dure with zero intertrial interval and very
rare empty intervals. This is the same thing
as FI with occasional reinforcement omission.
We know that the postfood distribution of re-
sponses will be highly asymmetrical: an ogival
(on average) increase in responding that re-
mains flat and high for a time at least equal
to twice the FI (cf. Kello & Staddon, 1974).
As an intermediate case, consider what will
happen if we increase the intertrial interval
until it is roughly equal to the to-be-timed in-
terval and increase the frequency of empty
trials. Now the distribution of responding be-
comes bimodal but still asymmetrical, and is
best modeled by a slightly skewed Gaussian
plus a linear ramp through the origin (Cheng
& Westwood, 1993). Finally, let us further in-
crease both the duration and frequency of
empty intervals. Now the distribution of re-
sponding looks almost Gaussian, with per-
haps a small additive constant (e.g., Church
et al., 1994). The question is, which of these
three distributions represents the ‘‘real’’ psy-
chological scale? Our answer is that there
may be no ‘‘real’’ distribution, only a learning
process that operates under the environmen-
tal constraints provided by the reinforcement
schedule. Church et al. (1991), on the other
hand, in their exploration of procedural var-
iables, have no doubt that the ‘‘real’’ distri-
bution is symmetrical: ‘‘It is readily shown
that, if only one [Gaussian source of vari-
ance] is operating, the result is symmetry in
the function’’ (p. 213). They therefore re-
phrase Platt’s question as, what are the sources
of variance that distort the underlying symmet-
ric distribution? Deviations from symmetry
are attributed to ‘‘anticipation’’ of the next
trial or ‘‘checking’’ responses, but because
these suggestions are not given the same kind
of formal expression as the SET assumptions,
we cannot be sure that they work as intended.
A more principled theoretical answer to the
question of how contingencies affect timing
behavior might be a version of SET that re-
lates the various theoretical parameters to the
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four or more parameters that define the peak
procedure, but this does not seem to have
been attempted.

The general reason for deferring discus-
sion of distribution form is that Gaussian-type
distributions commonly appear whenever re-
petitive observations are averaged or when
dealing with a multistage process. Both these
conditions are fulfilled by temporal discrimi-
nation experiments. The usual data in SET-
type experiments are averages across hun-
dreds of trials and often from 10 or more
animals. The preferred measure for demon-
strating symmetrical timing functions is peak
time (i.e., the peak of the response rate vs.
time distribution—the average of the wait-
run-stop pattern generated on each empty
trial), which is demonstrably more symmet-
rical than the distributions of start and stop
times that underlie it (cf. Brunner et al.,
1997, Figure 2).

Timing itself involves at least three stag-
es—encoding of real time, ‘‘storage’’ (which
may be gradual or, as SET proposes, rapid)
and some kind of ‘‘retrieval’’—so that the
preference distributions in a bisection exper-
iment, for example, reflect output as well as
input transformations and whatever process
of transformation exists between them.
Granted that variability affects each of these
stages, nonlinear effects in each stage are
likely to be washed out in the aggregate, lead-
ing to approximately symmetric output distri-
butions. Consequently, we believe that the ex-
istence of symmetrical Gaussian distributions
constitutes only weak evidence for the fun-
damental linearity of the underlying process-
es.

Proving this claim in detail is likely to be a
lengthy process whose validity necessarily de-
pends on the validity of our model for the
entire process of temporal discrimination:
time encoding, long-term memory, response
rule, and all the transformations in between.
We do not yet have such a comprehensive
model. We defer discussion to another occa-
sion for this reason, but also because we be-
lieve there are more powerful ways to test be-
havioral theories than through precise
quantitative correspondence between param-
eter-rich predictions and highly averaged
data. It is a better strategy, we argue, to look
first at individual animals and data from a
wide range of timing situations, and begin

with qualitative (rather than quantitative)
predictions from a theory that uses as few a
priori theoretical concepts as possible. De-
tailed quantitative predictions may be appro-
priate once a qualitative match between the-
ory and a broad range of data gives us
confidence that the major assumptions are
correct. We are not yet at that stage, partic-
ularly as far as assumptions about learning
(associative) mechanisms are concerned.
Consequently, even though our ultimate ob-
jective is to come up with a fully dynamic,
real-time theory, our focus in the second part
of the paper has been on static phenomena
and effects that can be explained without
commitment to any but the most general
learning principle.

We have shown in the second part that a
MTS memory model, derived from ubiquitous
data on rate-sensitive habituation, can account
for the major features of data from a wide va-
riety of time-related experiments: proportion-
al and Weber law temporal discrimination,
transient as well as persistent effects of rein-
forcement omission and reinforcement mag-
nitude, bisection, the discrimination of rela-
tive as well as absolute duration, and the
choose-short effect and its analogue in count-
ing experiments. The many resemblances be-
tween timing and counting are an automatic
consequence of the MTS model. Absolute-du-
ration effects in experiments on the discrimi-
nation of relative duration show that the static
form of trace left by a time marker is better
approximated by a power function than a log
function. Either function, as well as the dy-
namic MTS function, is consistent with data
from human and animal memory experi-
ments. In almost every case, the MTS model
suggests new experimental tests. We also argue
that many of the interesting transient and per-
sistent effects of drugs on time estimates can
be as well interpreted within our scheme as in
SET, and the comparison also suggests novel
experiments. The key feature of both accounts
for the interpretation of these drug effects
seems to be the separation between working
and reference memory—the pacemaker-accu-
mulator features of SET are unnecessary and
even misleading. Moreover, the role of mem-
ory as a timer in the MTS account immediate-
ly suggests direct links between time discrimi-
nation effects and mnemonic effects of drugs.

The major uncertainties in the MTS ap-
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proach have to do with learning and long-
term (associative) memory. How are trace val-
ues ‘‘learned’’? When, and how, are trace
values ‘‘stored’’ and ‘‘retrieved’’? Indeed, are
these metaphors even appropriate? Only
when the learning issue is settled can we be-
gin to apply the theory to experiments that
deal with expectations—choice between de-
layed reinforcers, the time-left procedure,
and so forth—and with true dynamic effects,
such as the rapid effects recently reported in
the timing literature (e.g., Lejeune et al.,
1997; Wynne & Staddon, 1988) as well as old-
er data on cyclic temporal schedules (e.g.,
Staddon, 1969; Staddon & Higa, 1991), or-
derly facts that are still not understood and
are widely ignored by SET and most other
contemporary theories of timing.
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